
Data Acquisition Toolbox™

Reference

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ Reference
© COPYRIGHT 2005–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2010 Online only Revised for Version 2.17 (Release 2010b)
April 2011 Online only Revised for Version 2.18 (Release 2011a)
September 2011 Online only Revised for Version 3.0 (Release 2011b)
March 2012 Online only Revised for Version 3.1 (Release 2012a)
September 2012 Online only Revised for Version 3.2 (Release 2012b)
March 2013 Online only Revised for Version 3.3 (Release 2013a)
September 2013 Online only Revised for Version 3.4 (Release 2013b)
March 2014 Online only Revised for Version 3.5 (Release 2014a)
October 2014 Online only Revised for Version 3.6 (Release 2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Base Properties — Alphabetical List
1

Device-Specific Properties — Alphabetical List
2

Block Reference
3

Functions — Alphabetical List
4

iv

1

Base Properties — Alphabetical List

1 Base Properties — Alphabetical List

1-2

ActiveEdge
Rising or falling edges of EdgeCount signals

Description

When working with the session-based interface, use the ActiveEdge property to
represent rising or falling edges of a EdgeCount signal.

Values

You can set the Active edge of a counter input channel to Rising or Falling.

Examples

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'Dev2':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change the Active Edge property to 'Falling':
ch.ActiveEdge = 'Falling'

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'Dev2':

 ActiveEdge: Falling

 ActiveEdge

1-3

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

Functions

addCounterInputChannel, addCounterOutputChannel

1 Base Properties — Alphabetical List

1-4

ActivePulse
Active pulse measurement of PulseWidth counter channel

Description

When working with the session-based interface , the ActivePulse property displays
the pulse width measurement in seconds of your counter channel, with PulseWidth
measurement type.

Values

Active pulse measurement values include:

• 'High'

• 'Low'

Examples

Create a session object, add a counter input channel, with the 'EdgeCount'
MeasurementType.
s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'PulseWidth')

ch =

Data acquisition counter input pulse width channel 'ctr0' on device 'cDAQ1Mod5':

 ActivePulse: High

 Terminal: 'PFI4'

 Name: empty

 ID: 'ctr1'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseWidth

Change the ActiveEdge property to Low.

ch.ActivePulse = 'Low'

ch =

 ActivePulse

1-5

Data acquisition counter input pulse width channel 'ctr0' on device 'cDAQ1Mod5':

 ActivePulse: Low

 Terminal: 'PFI4'

 Name: empty

 ID: 'ctr1'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseWidth'

See Also

addCounterInputChannel

1 Base Properties — Alphabetical List

1-6

ADCTimingMode
Set channel timing mode

Description

When working with the session-based interface, use the ADCTimingMode property to
specify if the timing mode in of all channels in the device is high resolution or high speed.

Note: The ADCTimingMode must be the same for all channels on the device.

Values

You can set the ADCTimingMode to:

• 'HighResolution'

• 'HighSpeed'

• 'Best50HzRejection'

• 'Best60HzRejection'

Examples

Create a session and add an analog input channel:

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

ch

ans =

Data acquisition analog input voltage channel 'ai1' on device 'cDAQ1Mod1':

 Coupling: DC

 TerminalConfig: SingleEnded

 ADCTimingMode

1-7

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai1'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Voltage'

 ADCTimingMode: ''

Set the ADCTimingMode property to 'HighResolution':
ch.ADCTimingMode = 'HighResolution';

See Also

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-8

AutoSyncDSA
Automatically Synchronize DSA devices

Description

Use this property to enable or disable automatic synchronization between DSA (PXI
or PCI) devices in the same session. By default the sessions automatic synchronization
capability is disabled.

Examples

To enable automatic synchronization, create a session and add channels from a DSA
device:

s = daq.createSession('ni')

addAnalogInputChannel(s,'PXI1Slot2',0,'Voltage');

addAnalogInputChannel(s,'PXI1Slot3',1,'Voltage');

Enable automatic synchronization and acquire data”

s.AutoSyncDSA = true;

startForeground(s);

See Also

addAnalogInputChannel

 BitsPerSample

1-9

BitsPerSample
Display bits per sample

Description

This property displays the maximum value of bits per sample of the device, based on the
device specifications. By default this read-only value is 24.

Example

View BitsPerSample Property

Create an audio input session and display session properties.

s = daq.createSession('directsound')

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (44100 scans) at 44100 scans/second.

 No channels have been added.

Properties, Methods, Events

Click on the Properties link.

 UseStandardSampleRates: true

 BitsPerSample: 24

 StandardSampleRates: [1x15 double]

 NumberOfScans: 44100

 DurationInSeconds: 1

 Rate: 44100

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 4410

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 22050

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

1 Base Properties — Alphabetical List

1-10

 TriggersPerRun: 1

 Vendor: DirectSound

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

See Also
StandardSampleRates | UseStandardSampleRate | addAudioInputChannel |
addAudioOutputChannel

 BridgeMode

1-11

BridgeMode
Specify analog input device bridge mode

Description

Use this property in the session-based interface to specify the bridge mode, which
represents the active gauge of the analog input channel.

The bridge mode is 'Unknown' when you add a bridge channel to the session. Change
this value to a valid mode to use the channel. Valid bridge modes are:

• 'Full' — All four gauges are active.
• 'Half'— Only two bridges are active.
• 'Quarter'— Only one bridge is active.

Examples

Set BridgeMode Property

Set the BridgeMode property of a analog input Bridge measurement type channel.

Create a session and add an analog input Bridge channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'Bridge');

Set the BridgeMode property to ‘Full’ and view the channel properties.

ch.BridgeMode = 'Full'

ch =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod7':

 BridgeMode: Full

 ExcitationSource: Internal

 ExcitationVoltage: 2.5

NominalBridgeResistance: 'Unknown'

1 Base Properties — Alphabetical List

1-12

 Range: -0.063 to +0.063 VoltsPerVolt

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Bridge'

 ADCTimingMode: HighResolution

See Also

addAnalogInputChannel

 BufferingConfig

1-13

BufferingConfig

Specify per-channel allocated memory

Description

Note: You cannot use the legacy interface on 64-bit MATLAB®. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

BufferingConfig is a two-element vector that specifies the per-channel allocated
memory. The first element of the vector specifies the block size, while the second element
of the vector specifies the number of blocks. The total allocated memory (in bytes) is
given by

(block size).(number of blocks).(number of channels).(native data type)

You can determine the native data type with daqhwinfo.

You can allocate memory automatically or manually. If BufferingMode is Auto, the
BufferingConfig values are automatically set by the engine. If BufferingMode is
Manual, then you must manually set the BufferingConfig values. If you change the
BufferingConfig values, BufferingMode is automatically set to Manual.

When memory is automatically allocated by the engine, the block-size value depends on
the sampling rate and is typically a binary number. The number of blocks is initially set
to a value of 30 but can dynamically increase to accommodate the memory requirements.
In most cases, the number of blocks used results in a per-channel memory that is
somewhat greater than the SamplesPerTrigger value. When you manually allocate
memory, the number of blocks is not dynamic and care must be taken to ensure there
is sufficient memory to store the acquired data. If the number of samples acquired or
queued exceeds the allocated memory, then an error is returned.

You can easily determine the memory allocated and available memory for each device
object with the daqmem function.

1 Base Properties — Alphabetical List

1-14

Characteristics

Usage AI, AO, common to all channels
Access Read/write
Data type Two-element vector of doubles
Read-only when running Yes

Values

The default value is determined by the engine, and is based on the number of channels
contained by the device object and the sampling rate. The BufferingMode value
determines whether the values are automatically updated as data is acquired. For analog
output objects, the default number of blocks is two.

Note: If you change the BufferingConfig property for an analog output object, all
previously queued output data will get discarded.

Examples

Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');

addchannel(ai,1:2);

The block size and number of blocks are given by BufferingConfig, while the native
data type for the sound card is given by daqhwinfo.

ai.BufferingConfig

ans =

 512 30

out = daqhwinfo(ai);

out.NativeDataType

ans =

int16

 BufferingConfig

1-15

With this information, the total allocated memory is calculated to be 61,440 bytes. This
number is stored by daqmem.

out = daqmem(ai);

out.UsedBytes

ans =

 61440

The allocated memory is more than sufficient to store 8000 two-byte samples for two
channels. If more memory was required, then the number of blocks would dynamically
grow because BufferingMode is set to Auto.

See Also

Functions

daqhwinfo, daqmem

Properties

BufferingMode, SampleRate, SamplesPerTrigger

1 Base Properties — Alphabetical List

1-16

BufferingMode

Specify how memory is allocated

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

BufferingMode can be set to Auto or Manual. If BufferingMode is set to Auto, the
data acquisition engine automatically allocates the required memory. If BufferingMode
is set to Manual, you must manually allocate memory with the BufferingConfig
property.

If BufferingMode is set to Auto and the SampleRate value is changed, then the
BufferingConfig values might be recalculated by the engine. Specifically, you
can increase (decrease) the block size if SampleRate is increased (decreased). If
BufferingMode is set to Auto and you change the BufferingConfig values, then
BufferingMode is automatically set to Manual. If BufferingMode is set to Manual,
then you cannot set the number of blocks to a value less than three.

For most data acquisition applications, you should set BufferingMode to Auto and have
memory allocated by the engine because this minimizes the chance of an out-of-memory
condition.

Characteristics

Usage AI, AO, common to all channels
Access Read/write
Data type String
Read-only when running Yes

 BufferingMode

1-17

Values

{Auto} Memory is allocated by the data acquisition engine.
Manual Memory is allocated manually.

See Also

Functions

daqmem

Properties

BufferingConfig

1 Base Properties — Alphabetical List

1-18

Channel

Contain hardware channels added to device object

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Channel is a vector of all the hardware channels contained by an analog input (AI) or
analog output (AO) object. Because a newly created AI or AO object does not contain
hardware channels, Channel is initially an empty vector. The size of Channel increases
as channels are added with the addchannel function, and decreases as channels are
removed using the delete function.

Channel is used to reference one or more individual channels. To reference a channel,
you must know its MATLAB index, which is given by the Index property. For example,
you must use Channel with the appropriate indices when configuring channel property
values.

For scanning hardware, the scan order follows the MATLAB index. Therefore, the
hardware channel associated with index 1 is sampled first, the hardware channel
associated with index 2 is sampled second, and so on. To change the scan order, you can
specify a permutation of the indices with Channel.

Characteristics

Usage AI, AO
Access Read/write
Data type Vector of channels
Read-only when running Yes

 Channel

1-19

Values

Values are automatically defined when channels are added to the device object with the
addchannel function. The default value is an empty column vector.

Examples

Create the analog input object ai for a National Instruments® card and add three
hardware channels to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:2);

To set a property value for the first channel added (ID = 0), you must reference the
channel by its index using the Channel property.

chans = ai.Channel(1);

chans.InputRange = [-10 10]

Based on the current configuration, the hardware channels are scanned in order from
0 to 2. To swap the scan order of channels 0 and 1, you can specify the appropriate
permutation of the MATLAB indices with Channel.

ai.Channel([1 2 3]) = ai.Channel([2 1 3]);

See Also

Functions

addchannel, delete

Properties

HwChannel, Index

1 Base Properties — Alphabetical List

1-20

ChannelName
Specify descriptive channel name

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ChannelName specifies a descriptive name for a hardware channel. If a channel name
is defined, then you can reference that channel by its name. If a channel name is not
defined, then the channel must be referenced by its index. Channel names are not
required to be unique.

You can also define descriptive channel names when channels are added to a device
object with the addchannel function.

Characteristics

Usage AI, AO, per channel
Access Read/write
Data type String
Read-only when running Yes

Values

The default value is an empty string. To reference a channel by name, it must contain
only letters, numbers, and underscores and must begin with a letter.

Examples

Create the analog input object ai for a sound card and add two channels to it.

 ChannelName

1-21

ai = analoginput('winsound');

addchannel(ai,1:2);

To assign a descriptive name to the first channel contained by ai:

Chan1 = ai.Channel(1)

Chan1.ChannelName = 'Joe'

You can now reference this channel by name instead of by index.

ai.Joe.Units = 'Decibels'

See Also

Functions

addchannel

1 Base Properties — Alphabetical List

1-22

Channels

Array of channel objects associated with session object

Description

This session object property contains and displays an array of channels added to the
session. For more information on the session-based interface, see “Session-Based
Interface”.

Tip You cannot directly add or remove channels using the Channels object properties.
Use addAnalogInputChannel and addAnalogOutputChannel to add channels. Use
removeChannel to remove channels.

Values

The value is determined by the channels you add to the session object.

Example

Access Channels Property

Create both analog and digital channels in a session and display the Channels property.

Create a session object, add an analog input channel, and display the session Channels
property.

s = daq.createSession('ni');

aich = addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'Bridge');

aich =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod7':

 Channels

1-23

 BridgeMode: Unknown

 ExcitationSource: Internal

 ExcitationVoltage: 2.5

NominalBridgeResistance: 'Unknown'

 Range: -0.025 to +0.025 VoltsPerVolt

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Bridge'

 ADCTimingMode: HighResolution

Properties, Methods, Events

Add an analog output channel and view the Channels property.

aoch = addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'Voltage')

aoch =

Data acquisition analog output voltage channel 'ao1' on device 'cDAQ1Mod2':

 TerminalConfig: SingleEnded

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ao1'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Voltage'

Add a digital channel with 'InputOnly'

dich = addDigitalChannel(s,'dev1', 'Port0/Line0:1', 'InputOnly')

dich =

Number of channels: 2

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ----------- --------------- ----- ----

 1 dio Dev1 port0/line0 InputOnly n/a

 2 dio Dev1 port0/line1 InputOnly n/a

Change the InputType property of the input channel to SingleEnded.

aich.InputType = 'SingleEnded';

1 Base Properties — Alphabetical List

1-24

You can use the channel object to access and edit the Channels property.

See Also

Functions

addAnalogInputChannel, addAnalogOutputChannel

 ChannelSkew

1-25

ChannelSkew

Specify time between consecutive scanned hardware channels

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ChannelSkew applies only to scanning hardware and not to simultaneous sample and
hold (SS/H) hardware.

If ChannelSkewMode is set to Minimum or Equisample, then ChannelSkew is
automatically set to the appropriate device-specific read-only value. For SS/H hardware,
the only valid ChannelSkew value is zero. For some vendors, ChannelSkewMode is
automatically set to Manual if you first set ChannelSkew to a valid value.

Characteristics

Usage AI, common to all channels
Access Read/write (depends on ChannelSkewMode value)
Data type Double
Read-only when running Yes

Values

For SS/H hardware, the only valid value is zero. For scanning hardware, the value
depends on ChannelSkewMode. ChannelSkew is specified in seconds.

1 Base Properties — Alphabetical List

1-26

See Also

Properties

ChannelSkewMode

 ChannelSkewMode

1-27

ChannelSkewMode
Specify how channel skew is determined

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

For simultaneous sample and hold (SS/H) hardware, ChannelSkewMode is None. For
scanning hardware, ChannelSkewMode can be Minimum, Equisample, or Manual
(National Instruments only). SS/H hardware includes sound cards, while scanning
hardware includes most Measurement Computing™ and NI boards. Note that some
supported boards from these vendors are SS/H, such as Measurement Computing's PCI-
DAS4020/12.

If ChannelSkewMode is Minimum, then the minimum channel skew supported by the
hardware is used. Some vendors refer to this as burst mode. If ChannelSkewMode is
Equisample, the channel skew is given by [(sampling rate)(number of channels)]-1.
If ChannelSkewMode is Manual, then you must specify the channel skew with the
ChannelSkew property. For some vendors, ChannelSkewMode is automatically set to
Manual if you first set ChannelSkew to a valid value.

Notes If you want to use the maximum sampling rate of your hardware, you should set
ChannelSkewMode to Equisample.

Large loads on the input device, especially if you are using multiple channels with
scanning hardware, can increase the settling time. To improve the settling time, set
ChannelSkewMode to Equisample and lower your sample rate.

Characteristics

Usage AI, common to all channels
Access Read/write

1 Base Properties — Alphabetical List

1-28

Data type String
Read-only when running Yes

Values

Advantech

{Equisample} The channel skew is given by [(sampling rate)(number of
channels)]-1.

Measurement Computing

{Minimum} The channel skew is set to the minimum supported value.
Equisample The channel skew is given by [(sampling rate)(number of

channels)]-1.

National Instruments

{Minimum} The channel skew is set to the minimum supported value.
Equisample The channel skew is given by [(sampling rate)(number of

channels)]-1.
Manual The channel skew is given by ChannelSkew.

Sound Cards

{None} This is the only supported value for SS/H hardware.

Examples

Create an analog input object for an MCC device and add eight channels.

ai = analoginput('mcc',1);

 ChannelSkewMode

1-29

addchannel(ai,0:7);

Using the default ChannelSkewMode value of Min and the default SampleRate value of
1000, the corresponding ChannelSkew value is

ai.ChannelSkew

ans =

 1.0000e-005

To use the maximum sampling rate, set ChannelSkewMode to Equisample.

ai.ChannelskewMode = 'Equisample';

ai.Samplerate = 100000/8;

See Also

Properties

ChannelSkew, SampleRate

1 Base Properties — Alphabetical List

1-30

ClockSource

Specify clock that governs hardware conversion rate

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

For all supported hardware except Measurement Computing analog output subsystems,
ClockSource can be set to Internal, which specifies that the acquisition rate is
governed by the internal hardware clock.

Use this table to map to the National Instruments terminology.

Data Acquisition Toolbox™ NI_DAQmx

Scan Clock Sample Clock
Sample Clock Convert Clock

For subsystems without a hardware clock, you must use software clocking to govern
the sampling rate. Software clocking allows a maximum sampling rate of 500 Hz and a
minimum sampling rate of 0.0002 Hz. An error is returned if more than 1 sample of jitter
is detected. Note that you might not be able to attain rates over 100 Hz on all systems.

Characteristics

Usage AI, AO, common to all channels
Access Read/write
Data type String
Read-only when running Yes

 ClockSource

1-31

Values

Advantech

{Internal} The internal hardware clock is used (AI only).
External Externally control the channel clock (AI only).
Software The computer clock is used.

Measurement Computing

{Internal} The internal hardware clock is used.
External Externally control the channel clock.
Software The computer clock is used.

National Instruments

{Internal} The internal hardware clock is used.
External Externally control the channel clock (AO only).
ExternalSampleCtrl Externally control the channel clock. This value overrides the

ChannelSkew property value (AI only). This value does not
apply to cards with simultaneous sample and hold.

Note: If you set ClockSource to ExternalSampleCtrl then
the value of ExternalSampleClockSource specifies the pin
whose signal is used as the channel clock for conversions on
each channel.

ExternalScanCtrl Externally control the scan clock. This value overrides the
SampleRate property value (AI only).

Note: If you set ClockSource to ExternalScanCtrl then
the value of ExternalScanClockSource specifies the pin
whose signal is used as the scan clock to initiate conversions
across a group of channels.

1 Base Properties — Alphabetical List

1-32

ExternalSampleAndScanCtrlExternally control the channel and scan clocks. This value
overrides the ChannelSkew and SampleRate property
values (AI only). This value does not apply to cards with
simultaneous sample and hold.

Note: If you set ClockSource to
ExternalSampleAndScanCtrl then the value of
ExternalSampleClockSource specifies the pin whose signal
is used as the channel clock for conversions on each channel,
and the value of ExternalScanClockSource specifies
the pin whose signal is used as the scan clock to initiate
conversions across a group of channels.

Note: If you set the ClockSource property to one of the External options, you
must also set the SampleRate property to a value close to the external clock rate.
SampleRate does not directly affect the external device, and the device will not use
SampleRate if you have set an external clock rate, but this ensures that the toolbox
configures itself correctly for expected data rates.

Sound Cards

{Internal} The internal hardware clock is used.

See Also

Properties

ChannelSkew, SampleRate

 Connections

1-33

Connections
Array of connections in session

Description

This session property contains and displays all connections added to the session.

Tip You cannot directly add or remove connections using the Connections object
properties. Use addTriggerConnection and addClockConnection to add
connections. Use removeConnection to remove connections.

Values

The value is determined by the connections you add to the session.

Examples

Remove Synchronization Connection

This example shows you how to remove a synchronization connection.

Create a session and add analog input channels and trigger and clock connections.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addAnalogInputChannel(s,'Dev3', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

addTriggerConnection(s,'Dev1/PFI4','Dev3/PFI0','StartTrigger');

addClockConnection(s,'Dev1/PFI5','Dev2/PFI1','ScanClock');

Examine the session Connections property.

s.Connections

ans =

1 Base Properties — Alphabetical List

1-34

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by:

 'Dev2' at terminal 'PFI0'

 'Dev3' at terminal 'PFI0'

Scan Clock is provided by 'Dev1' at 'PFI5' and will be received by:

 'Dev2' at terminal 'PFI1'

 'Dev3' at terminal 'PFI1'

 index Type Source Destination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI4 Dev2/PFI0

 2 StartTrigger Dev1/PFI4 Dev3/PFI0

 3 ScanClock Dev1/PFI5 Dev2/PFI1

 4 ScanClock Dev1/PFI5 Dev3/PFI1

Remove the last clock connection at index 4 and display the session connections.

removeConnection(s,4)

s.Connections

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by:

 'Dev2' at terminal 'PFI0'

 'Dev3' at terminal 'PFI0'

Scan Clock is provided by 'Dev1' at 'PFI5' and will be received by 'Dev2' at terminal 'PFI1'.

 index Type Source Destination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI4 Dev2/PFI0

 2 StartTrigger Dev1/PFI4 Dev3/PFI0

 3 ScanClock Dev1/PFI5 Dev2/PFI1

See Also

Function

addTriggerConnection, addClockConnection,

 CountDirection

1-35

CountDirection
Specify direction of counter channel

Description

When working with the session-based interface, use the CountDirection property to
set the direction of the counter. Count direction can be 'Increment', in which case the
counter operates in incremental order, or 'Decrement', in which the counter operates in
decrements.

Examples

Create a session object, add a counter input channel, and change the CountDirection.
s = daq.createSession('ni');

ch = addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change CountDirection to 'Decrement':

ch.CountDirection = 'Decrement'

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Decrement

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

1 Base Properties — Alphabetical List

1-36

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

addCounterInputChannel

 DataMissedFcn

1-37

DataMissedFcn
Specify callback function to execute when data is missed

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A data missed event is generated immediately after acquired data is missed. This event
executes the callback function specified for DataMissedFcn. The default value for
DataMissedFcn is daqcallback, which displays the event type and the device object
name.

In most cases, data is missed because:

• The engine cannot keep up with the rate of acquisition.
• The driver wrote new data into the hardware's FIFO buffer before the previously

acquired data was read. You can usually avoid this problem by increasing the size of
the memory block with the BufferingConfig property.

Data missed event information is stored in the Type and Data fields of the EventLog
property. The Type field value is DataMissed. The Data field values are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
RelSample The acquired sample number when the event occurred.

When a data missed event occurs, the analog input object is automatically stopped.

Characteristics

Usage AI, common to all channels
Access Read/write

1 Base Properties — Alphabetical List

1-38

Data type String
Read-only when running No

Values

The default value is daqcallback.

See Also

Functions

daqcallback

Properties

EventLog

 DefaultChannelValue

1-39

DefaultChannelValue
Specify value held by analog output subsystem

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

DefaultChannelValue specifies the value to write to the analog output (AO) subsystem
when data is finished being output from the engine.

DefaultChannelValue is used only when OutOfDataMode is set to DefaultValue.
This property guarantees that a known value is held by the AO subsystem if a run-time
error occurs. Note that sound cards do not have an OutOfDataMode property.

Characteristics

Usage AO, per channel
Access Read/write
Data type Double
Read-only when running Yes

Values

The default value is zero.

Examples

Create the analog output object ao and add two channels to it.

ao = analogoutput('nidaq','Dev1');

1 Base Properties — Alphabetical List

1-40

addchannel(ao,0:1);

You can configure ao so that when it stops outputting data, a value of 1 volt is held for
both channels.

ao.OutOfDataMode = 'DefaultValue';

ao.Channel.DefaultChannelValue = 1.0;

See Also

Properties

OutOfDataMode

 Destination

1-41

Destination
Indicates trigger destination terminal

Description

When working with the session-based interface, the Destination property indicates the
device and terminal to which you connect a trigger.

Example

Examine a Trigger Connection Destination

Create a session with a trigger connection and examine the connection properties.

Create a session and add 2 analog input channels form different devices.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

Add a trigger connection and examine the connection properties.

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger')

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by 'Dev2' at terminal 'PFI0'.

 TriggerType: 'Digital'

TriggerCondition: RisingEdge

 Source: 'Dev1/PFI4'

 Destination: 'Dev2/PFI0'

 Type: StartTrigger

See Also

Source, addTriggerConnection

1 Base Properties — Alphabetical List

1-42

Device
Channel device information

Description

When working with the session-based interface, the read-only Device property displays
device information for the channel.

Examples

Create a session object, add a counter input channel, and view the Device property.
s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount');

ch.Device

ans =

ni cDAQ1Mod5: National Instruments NI 9402

 Counter input subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 3 channels

 'PulseGeneration' measurement type

This module is in chassis 'cDAQ1', slot 5

See Also

addCounterInputChannel, addCounterOutputChannel

 Direction

1-43

Direction
Specify digital channel direction

Description

When you add a digital channel or a group to a session, you can specify the measurement
type to be:

• Input

• Output

• Unknown

When you specify the MeasurementType as Bidirectional, you can use the
channel to input and output messges. By default the channel is set

to Unknown. Change the direction to output singnal on the channel.

Example

To change the direction of a bidirectional signal on a digital channel in the session s,
type:

s.Channels(1).Direction='Output';

Change the Direction of a Digital Channel

Change the direction of a bidirectional digital channel to Input.

Create a session and add a bidirectional digital channel.

s = daq.createSession('ni')

ch = addDigitalChannel(s,'dev6', 'Port0/Line0', 'Bidirectional')

ch =

Data acquisition digital bidirectional (unknown) channel 'port0/line0' on device 'Dev6':

 Direction: Unknown

1 Base Properties — Alphabetical List

1-44

 Name: ''

 ID: 'port0/line0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Bidirectional (Unknown)'

Change the channels direction to 'Input'.

ch.Direction = 'Input'

ch =

Data acquisition digital bidirectional (input) channel 'port0/line0' on device 'Dev6':

 Direction: Input

 Name: ''

 ID: 'port0/line0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Bidirectional (Input)'

Properties, Methods, Events

 Direction

1-45

Direction
Specify whether line is for input or output

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

When adding hardware lines to a digital I/O object with addline, you must configure
the line direction. The line direction can be In or Out, and is automatically stored in
Direction. If a line direction is In, you can only read a value from that line. If a line
direction is Out, you can write or read a line value.

For line-configurable devices, you can change individual line directions using
Direction. For port-configurable devices, you cannot change individual line directions.

Characteristics

Usage DIO, per line
Access Read/write
Data type String
Read-only when running Yes

Values

{In} The line can be read from.
Out The line can be read from or written to.

Examples

Create the digital I/O object dio and add two input lines and two output lines to it.

1 Base Properties — Alphabetical List

1-46

dio = digitalio('nidaq','Dev1');

addline(dio,0:3,{'In','In','Out','Out'});

To configure all lines for output:

dio.Line(1:2).Direction = 'Out';

See Also

Functions

addline

 DurationInSeconds

1-47

DurationInSeconds
Specify duration of acquisition

Description

When working with the session-based interface, use the DurationInSeconds property
to change the duration of an acquisition.

When the session contains digital or audio output channels, DurationInSeconds
becomes a read only property.

If the output channels are analog, digital or audio, the value is determined by
s ScansQueued

s Rate

.

.

.

If the session contains only counter output channels with PulseGeneration measurement
type, then DurationInSeconds represents the duration of the pulse train signal
generation.

Values

In a session with only input channels or counter output channels, you can enter a value
in seconds for the length of the acquisition. Changing the duration changes the number
of scans accordingly. By default, the DurationInSeconds is set to 1 second.

Examples

Create a session object, add an analog input channel, and change the duration:
s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');

s.DurationInSeconds = 2

s =

Data acquisition session using National Instruments hardware:

 Will run for 2 seconds (2000 scans) at 1000 scans/second.

 Operation starts immediately.

 Number of channels: 1

1 Base Properties — Alphabetical List

1-48

 index Type Device Channel InputType Range Name

 ----- ---- --------- ------- --------- ---------------- ----

 1 ai cDAQ1Mod1 ai0 Diff -10 to +10 Volts

See Also

Properties

NumberOfScans, Rate

Functions

addCounterInputChannel

 DutyCycle

1-49

DutyCycle
Duty cycle of output channel

Description

When working with the session-based interface, use the DutyCycle property to specify
the fraction of time that the generated pulse is in active state.

Duty cycle is the ratio between the duration of the pulse and the pulse period. For
example, if a pulse duration is 1 microsecond and the pulse period is 4 microseconds, the
duty cycle is 0.25. In a square wave, you will see that the time the signal is high is equal
to the time the signal is low.

For function generation channels using Digilent devices, each waveform adopts the duty
cycle

Examples

Specify Duty Cycle

Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');

ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low

 InitialDelay: 2.5e-08

 Frequency: 100

 DutyCycle: 0.5

 Terminal: 'PFI0'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'PulseGeneration'

1 Base Properties — Alphabetical List

1-50

Change the DutyCycle to 0.25 and display the channel:

ch.DutyCycle

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low

 InitialDelay: 2.5e-08

 Frequency: 100

 DutyCycle: 0.25

 Terminal: 'PFI0'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'PulseGeneration'

See Also

Class

addCounterOutputChannel

 EncoderType

1-51

EncoderType
Encoding type of counter channel

Description

When working with the session-based interface, use the EncoderType property to
specify the encoding type of the counter input 'Position' channel.

Encoder types include:

• 'X1'

• 'X2'

• 'X4'

• 'TwoPulse'

Example

Change Encoder Type Property

Change the EncodeType property of a counter input channel with a Position
measurement type.

Create a session and add a counter input channel with Position measurement type.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

1 Base Properties — Alphabetical List

1-52

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

Change the channels encoder type to X2.

ch.EncoderType='X2'

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X2

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position

See Also

addCounterInputChannel

 EnhancedAliasRejectionEnable

1-53

EnhancedAliasRejectionEnable
Set enhanced alias rejection mode

Description

Enable or disable the enhanced alias rejection on your DSA device’s analog channel. See
“Synchronize DSA Devices” for more information. Enhanced alias reject is disabled by
default. This property only takes logical values.

s.Channels(1).EnhancedAliasRejectionEnable = 1

You cannot modify enhanced rejection mode if you are synchronizing your DSA device
using AutoSyncDSA.

Example

Enable Enhanced Alias Rejection

Enable enhanced alias rejection on a DSA device.

Create a session and add an analog input voltage channel using a DSA device.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'PXI1Slot2', 0, 'Voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'PXI1Slot2':

 Coupling: DC

 TerminalConfig: PseudoDifferential

 Range: -42 to +42 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.PXIDSAModule]

 MeasurementType: 'Voltage'

EnhancedAliasRejectionEnable: 0

Enable enhanced alias rejection.

1 Base Properties — Alphabetical List

1-54

ch.EnhancedAliasRejectionEnable = 1

ch =

Data acquisition analog input voltage channel 'ai0' on device 'PXI1Slot2':

 Coupling: DC

 TerminalConfig: PseudoDifferential

 Range: -42 to +42 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.PXIDSAModule]

 MeasurementType: 'Voltage'

EnhancedAliasRejectionEnable: 1

See Also
AutoSyncDSA

 EventLog

1-55

EventLog
Store information for specific events

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Eventlog is a structure array that stores information related to specific analog input
(AI) or analog output (AO) events. Event information is stored in the Type and Data
fields of EventLog. Type stores the event type. The logged event types are shown below.

Event Type Description AI AO

Data missed Data is missed by the engine. ✓
Input overrange A signal exceeds the hardware input

range.
✓

Run-time error A run-time error is encountered. Run-time
errors include timeouts and hardware
errors.

✓ ✓

Start The start function is issued. ✓ ✓
Stop The device object stops executing. ✓ ✓
Trigger A trigger executes. ✓ ✓

Timer events, samples available events (AI), and samples output events (AO) are not
logged.

Data stores event-specific information associated with the event type in several fields.
For all stored events, Data contains the RelSample field, which returns the input or
output sample number at the time the event occurred. For the start, stop, run-time error,
and trigger events, Data contains the AbsTime field, which returns the absolute time (as
a clock vector) the event occurred. Other event-specific fields are included in Data. For
a description of these fields, refer to “Events and Callbacks” for analog input objects and
analog output objects, or the appropriate reference pages in this chapter.

1 Base Properties — Alphabetical List

1-56

EventLog can store a maximum of 1000 events. If this value is exceeded, then the most
recent 1000 events are stored. You can use the showdaqevents function to easily display
stored event information.

Characteristics

Usage AI, AO, common to all channels
Access Read-only
Data type Structure array
Read-only when running N/A

Values

Values are automatically added as events occur. The default value is an empty structure
array.

Examples

Create the analog input object ai and add four channels to it.

ai = analoginput('nidaq','Dev1');

chans = addchannel(ai,0:3);

Acquire 1 second of data and display the logged event types.

start(ai)

events = ai.EventLog;

{events.Type}

ans =

 'Start' 'Trigger' 'Stop

To examine the data associated with the trigger event:

events(2).Data

ans =

 EventLog

1-57

 AbsTime: [1999 2 12 14 54 52.5456]

 RelSample: 0

 Channel: []

 Trigger: 1

See Also

Functions

showdaqevents

1 Base Properties — Alphabetical List

1-58

ExcitationCurrent
Voltage of external source of excitation

Description

When working with the session-based interface, the ExcitationCurrent property
indicates the current in amps that you use to excite an IEPE accelerometer, IEPE
microphone, generic IEPE sensors, and RTDs.

The default ExcitationCurrent is typically determined by the device. If the device
supports an range of excitation currents, the default will be the lowest available value in
the range.

Example

Change Excitation Current Value

Change the excitation current value of a microphone channel.

Create a session and add an analog input microphone channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 ExcitationCurrent

1-59

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Change the excitation current value to 0.0040.

ch.ExcitationCurrent = .0040

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.004

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

See Also

Properties

ExcitationSource

Functions

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-60

ExcitationSource
External source of excitation

Description

When working with the session-based interface, the ExcitationSource property
indicates the source of ExcitationVoltage for bridge measurements or
ExcitationCurrent for IEPE sensors and RTDs. Excitation source can be:

• Internal

• External

• None

• Unknown

By default, ExcitationSource is set to Unknown.

Example

Change Excitation Source

Change the excitation source of a microphone channel.

Create a session and add an analog input microphone channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.004

 ExcitationSource: Unknown

 Coupling: AC

 ExcitationSource

1-61

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Change the excitation current value to 'Internal'.

ch.ch.ExcitationSource = 'Internal'

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.004

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

See Also

Properties

ExcitationCurrent

ExcitationVoltage

Functions

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-62

ExcitationVoltage
Voltage of excitation source

Description

When working with RTD measurements in the session-based interface, the
ExcitationVoltage property indicates the excitation voltage value to apply to bridge
measurements.

The default ExcitationVoltage is typically determined by the device. If the device
supports a range of excitation voltages, the default will be the lowest available value in
the range.

See Also

Properties

ExcitationSource

 ExternalTriggerTimeout

1-63

ExternalTriggerTimeout
Indicate if external trigger timed out

Description

When working with the session-based interface, the ExternalTriggerTimeout
property indicates time the session waits before an external trigger times out.

Example

Specify External Trigger Timeout

Specify how long the session waits for an external trigger before timing out.

Create a session and click on the Properties link to display session properties.

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

Properties, Methods, Events

 AutoSyncDSA: false

 NumberOfScans: 1000

 DurationInSeconds: 1

 Rate: 1000

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 100

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 500

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

 TriggersPerRun: 1

 Vendor: National Instruments

1 Base Properties — Alphabetical List

1-64

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

Change the timeout to 15 seconds.

s.ExternalTriggerTimeout = 15

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

See Also

addTriggerConnection

 Frequency

1-65

Frequency
Frequency of generated output

Description

When working with counter input channels, use the Frequency property to set the pulse
repetition rate of a counter input channel .

When working with function generation channel, data acquisition sessions, the rate
of a waveform is controlled by the channel’s Frequency property. To synchronize all
operation sin the session, set each channel’s generation rate individually, and change the
session Rate to match the channel’s generation rate.

The frequency value must fall within the specified FrequencyLimit values.

Values

Specify the frequency in hertz.

Examples

Set the Frequency of a Counter Input Channel

Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');

ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')

Change the Frequency to 200 and display the channel:

ch.Frequency = 200;

ch

ans =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

1 Base Properties — Alphabetical List

1-66

 IdleState: Low

 InitialDelay: 2.5e-008

 Frequency: 200

 DutyCycle: 0.5

 Terminal: 'PFI12'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseGeneration'

Set the Frequency of a Function Generator Channel

Create a waveform generation channel, and change the generation rate to 20000 scans
per second.

s = daq.createSession('digilent'):

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine'

fgenCh.Frequency = 20000

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 Frequency: 20000

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

See Also

Properties

FrequencyLimit

 Frequency

1-67

Functions

addCounterInputChanneladdFunctionGeneratorChannel

1 Base Properties — Alphabetical List

1-68

HwChannel
Specify hardware channel ID

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

All channels contained by a device object have a hardware channel ID and an associated
MATLAB index. The channel ID is given by HwChannel and the MATLAB index is given
by the Index property. The HwChannel value is defined when hardware channels are
added to a device object with the addchannel function.

The beginning channel ID value depends on the hardware device. For National
Instruments hardware, channel IDs are zero-based (begin at zero). For sound cards,
channel IDs are one-based (begin at one).

For scanning hardware, the scan order follows the MATLAB index. Therefore, the
hardware channel associated with index 1 is sampled first, the hardware channel
associated with index 2 is sampled second, and so on. To change the scan order, you can
assign the channel IDs to different indices using HwChannel.

Characteristics

Usage AI, AO, per channel
Access Read/write
Data type Double
Read-only when running Yes

Values

Values are automatically defined when channels are added to the device object with the
addchannel function. The default value is one.

 HwChannel

1-69

Examples

Create the analog input object ai for a National Instruments board and add the first
three hardware channels to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:2);

Based on the current configuration, the hardware channels are scanned in order from 0
to 2. To swap the scan order of channels 0 and 1, you can assign these channels to the
appropriate indices using HwChannel.

ai.Channel(1).HwChannel = 1;

ai.Channel(2).HwChannel = 0;

See Also

Functions

addchannel

Properties

Channel, Index

1 Base Properties — Alphabetical List

1-70

Gain
Waveform output gain

Description

When using waveform function generation channels, Gain represents the value by which
the scaled waveform data is multiplied to get the output data.

Values

The waveform gain can be between –5 and 5. Ensure that Gain x Voltage + Offset
falls within the valid rages of output voltage of the device.

Example

Change the gain of the waveform function generation channel to 2 volts.

s = daq.createSession('digilent');

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine');

fgenCh.Gain = 2

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 2

 Offset: 0

 Frequency: 4096

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

 Gain

1-71

See Also

Properties

OffsetPhaseDutyCycle

Functions

addFunctionGeneratorChannel

1 Base Properties — Alphabetical List

1-72

FrequencyLimit
Limit of rate of operation based on hardware configuration

Description

In the session-based interface, the read-only FrequencyLimit property displays the
minimum and maximum rates that the function generation channel supports.

Tip FrequencyLimit changes dynamically as the channel configuration changes.

Example

View waveform function generation channel’s generation rate limit.

s = daq.createSession('digilent')

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine')

fgenCh.FrequencyLimit

ans =

[0.0 25000000.0]

See Also

Properties

Frequency

 HwLine

1-73

HwLine
Specify hardware line ID

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

All lines contained by a digital I/O object have a hardware ID and an associated
MATLAB index. The hardware ID is given by HwLine and the MATLAB index is given
by the Index property. The HwLine value is defined when hardware lines are added to a
digital I/O object with the addline function.

The beginning line ID value depends on the hardware device. For National Instruments
hardware, line IDs are zero-based (begin at zero).

Characteristics

Usage DIO, per line
Access Read/write
Data type Double
Read-only when running Yes

Values

Values are automatically defined when lines are added to the digital I/O object with the
addline function. The default value is one.

Examples

Suppose you create the digital I/O object dio and add four hardware lines to it.

1 Base Properties — Alphabetical List

1-74

dio = digitalio('nidaq','Dev1');

addline(dio,0:3,'out');

addline automatically assigns the indices 1-4 to these hardware lines. You can swap the
hardware lines associated with index 1 and index 2 with HwLine.

dio.Line(1).HwLine = 1;

dio.Line(2).HwLine = 0;

See Also

Functions

addline

Properties

Line, Index

 ID

1-75

ID
ID of channel in session

Description

When working with the session-based interface, the ID property displays the ID of the
channel. You set the channel ID when you add the channel to a session object.

Examples

Create a session object, and add a counter input channel with the ID 'ctr0'.
s = daq.createSession('ni');

ch = addCounterInputChannel (s,'cDAQ1Mod5', 'ctr0', 'EdgeCount')

ch=

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change CountDirection to 'Decrement':

ch.CountDirection = 'Decrement'

ch=

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Decrement

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

1 Base Properties — Alphabetical List

1-76

See Also

addCounterInputChannel

 IdleState

1-77

IdleState
Default state of counter output channel

Description

When working with the session-based interface, the IdleState property indicates the
default state of the counter output channel with a 'PulseGeneration' measurement
type when the counter is not running.

Values

IdleState is either 'High' or 'Low'.

Examples

Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');

s.addCounterOutputChannel('cDAQ1Mod5', 'ctr0', 'PulseGeneration');

Change the IdleState property to 'High' and display the channel:

s.Channels.IdleState = 'High';

s.Channels

ans =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: High

 InitialDelay: 2.5e-008

 Frequency: 100

 DutyCycle: 0.5

 Terminal: 'PFI12'

 Name: empty

 ID: 'ctr0'

1 Base Properties — Alphabetical List

1-78

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseGeneration'

See Also

addCounterOutputChannel

 Index

1-79

Index
MATLAB index of hardware channel or line

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Every hardware channel (line) contained by a device object has an associated MATLAB
index that is used to reference that channel (line). For example, to configure property
values for an individual channel, you must reference the channel through the Channel
property using the appropriate Index value. Likewise, to configure property values for
an individual line, you must reference the line through the Line property using the
appropriate Index value.

For channels (lines), you can assign indices automatically with the addchannel
(addline) function. Channel (line) indices always begin at 1 and increase monotonically
up to the number of channels (lines) contained by the device object. For channels, index
assignments can also be made manually with the addchannel function.

For scanning hardware, the scan order follows the MATLAB index. Therefore, the
hardware channel associated with index 1 is sampled first, the hardware channel
associated with index 2 is sampled second, and so on. To change the scan order, you can
assign the channel IDs to different indices using the HwChannel or Channel property.

Index provides a convenient way to access channels and lines programmatically.

Characteristics

Usage AI, AO, per channel; DIO, per line
Access Read-only
Data type Double
Read-only when running N/A

1 Base Properties — Alphabetical List

1-80

Values

Values are automatically defined when channels (lines) are added to the device object
with the addchannel (addline) function. The default value is one.

Examples

Create the analog input object ai for a sound card and add two hardware channels to it.

ai = analoginput('winsound');

chans = addchannel(ai,1:2);

You can access the MATLAB indices for these channels with Index.

Index1 = chans(1).Index;

Index2 = chans(2).Index;

See Also

Functions

addchannel, addline

Properties

Channel, HwChannel, HwLine, Line

 InitialDelay

1-81

InitialDelay

Delay until output channel generates pulses

Description

When working with the session-based interface, use the InitialDelay property to set
an initial delay on the counter output channel in which the counter is running but does
not generate any pulse.

Example

Specify Initial Delay

Set the initial delay on a counter output channel to 3.

Create a session and add a counter input channel.

s = daq.createSession('ni');

ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration');

Set the initial delay.

ch.InitialDelay = 3

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low

 InitialDelay: 3

 Frequency: 100

 DutyCycle: 0.5

 Terminal: 'PFI0'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

1 Base Properties — Alphabetical List

1-82

MeasurementType: 'PulseGeneration'

See Also

addCounterOutputChannel

 InitialCount

1-83

InitialCount
Specify initial count point

Description

When working with the session-based interface, use the InitialCount property to set
the point from which the device starts the counter.

Values

Examples

Create a session object, add counter input channel, and change the InitialCount.
s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change InitalCount to 15:

ch.InitialCount = 15

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 15

1 Base Properties — Alphabetical List

1-84

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

addCounterInputChannel

 InitialTriggerTime

1-85

InitialTriggerTime

Absolute time of first trigger

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

For all trigger types, InitialTriggerTime records the time when Logging or
Sending is set to On. The absolute time is recorded as a clock vector.

You can return the InitialTriggerTime value with the getdata function, or with the
Data.AbsTime field of the EventLog property.

If you synchronize multiple analoginput and analogoutput objects by setting
TriggerType to HwDigitalTrigger and use the same digital trigger signal for all of
the subsystems, the InitialTriggerTime property will not show the exact identical
time for all subsystems.

Although the actual trigger events occurred simultaneously across all subsystems, the
InitialTriggerTime events are recorded serially on a single thread. This causes the
discrepancy of a few milliseconds. The time difference between InitialTriggerTime
for multiple Data Acquisition Toolbox objects will not be consistent due to operating
system process scheduling algorithms.

Characteristics

Usage AI, AO, common to all channels
Access Read-only
Data type Six-element vector of doubles
Read-only when running N/A

1 Base Properties — Alphabetical List

1-86

Values

The value is automatically updated when the trigger executes. The default value is a
vector of zeros.

Examples

Create the analog input object ai for a sound card and add two hardware channels to it.

ai = analoginput('winsound');

chans = addchannel(ai,1:2);

After starting ai, the trigger immediately executes and the trigger time is recorded.

start(ai)

abstime = ai.InitialTriggerTime

abstime =

1.0e+003 *

 1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

To convert the clock vector to a more convenient form:

t = fix(abstime);

sprintf('%d:%d:%d', t(4),t(5),t(6))

ans =

13:26:20

See Also

Functions

getdata

Properties

EventLog, Logging, Sending

 InputOverRangeFcn

1-87

InputOverRangeFcn

Specify callback function to execute when acquired data exceeds valid hardware range

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

An input overrange event is generated immediately after an overrange condition is
detected for any channel group member. This event executes the callback function
specified for InputOverRangeFcn.

An overrange condition occurs when an input signal exceeds the range specified by the
SensorRange property. Overrange detection is enabled only if the analog input object is
running and a callback function is specified for InputOverRangeFcn.

Input overrange event information is stored in the Type and Data fields of the EventLog
property. The Type field value is OverRange. The Data field values are given below.

Note: The input overrange event is not generated if a signal begins outside the range and
then goes into the range.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
Channel The index of the channel that experienced an overrange signal.
OverRange The OverRange value, Off indicates that the channel went from

overrange to in range, and On indicates that it went from in range
to overrange.

RelSample The acquired sample immediately before the moment when the
overrange transition occurs.

1 Base Properties — Alphabetical List

1-88

Note: The input signal values will not exceed the values set by the InputRange
property. If you set InputRange and SensorRange to the same value, the OverRange
event is never received. To receive OverRange events set the value of SensorRange
within, and not equal to, the InputRange value.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String
Read-only when running No

Values

The default value is an empty string.

See Also

Properties

EventLog, SensorRange

 InputRange

1-89

InputRange
Specify range of analog input subsystem

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

InputRange is a two-element vector that specifies the range of voltages that can be
accepted by the analog input (AI) subsystem. You should configure InputRange so that
the maximum dynamic range of your hardware is utilized.

If an input signal exceeds the InputRange value, then an overrange condition occurs.
Overrange detection is enabled only if the analog input object is running and a value is
specified for the InputOverRangeFcn property. For many devices, the input range is
expressed in terms of the gain and polarity.

AI subsystems have a finite number of InputRange values that you can set. If an input
range is specified but does not match a valid range, then the next highest supported
range is automatically selected by the engine. If InputRange exceeds the range of valid
values, then an error is returned. Use the daqhwinfo function to return the input ranges
supported by your board.

Because the engine can set the input range to a value that differs from the value you
specify, you should return the actual input range for each channel using the get function
or the device object display summary. Alternatively, you can use the setverify
function, which sets the InputRange value and then returns the actual value that is set.

Note If your hardware supports a channel gain list, then you can configure InputRange
for individual channels. Otherwise, InputRange must have the same value for all
channels contained by the analog input object.

You should use InputRange in conjunction with the SensorRange property. These two
properties should be configured such that the maximum precision is obtained and the full
dynamic range of the sensor signal is covered.

1 Base Properties — Alphabetical List

1-90

Characteristics

Usage AI, per channel
Access Read/write
Data type Two-element vector of doubles
Read-only when running Yes

Values

The default value is supplied by the hardware driver.

Examples

Create the analog input object ai for a National Instruments board, and add two
hardware channels to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:1);

You can return the input ranges supported by the board with the InputRanges field of
the daqhwinfo function.

out = daqhwinfo(ai);

out.InputRanges

ans =

 -0.0500 0.0500

 -0.5000 0.5000

 -5.0000 5.0000

 -10.0000 10.0000

To configure both channels contained by ai to accept input signals between -10 volts and
10 volts:

ai.Channel.InputRange = [-10 10];

Some devices allow you to set each channel's InputRange property independently:

ai.Channel(1).InputRange = [-0.05 0.05];

 InputRange

1-91

ai.Channel(2).InputRange = [-10 10];

Alternatively, you can use the setverify function.

ActualRange = setverify(ai.Channel,'InputRange',[-10 10]);

See Also

Functions

daqhwinfo, setverify

Properties

InputOverRangeFcn, SensorRange, Units, UnitsRange

1 Base Properties — Alphabetical List

1-92

InputType
Specify analog input hardware channel configuration

Description

For National Instruments devices, InputType can be SingleEnded, Differential,
NonReferencedSingleEnded, or PseudoDifferential. For Measurement Computing
devices, InputType can be SingleEnded, or Differential. For sound cards,
InputType can only be AC-Coupled.

If channels have been added to a National Instruments or Measurement Computing
analog input object and you change the InputType value, then the channels are
automatically deleted if the hardware reduces the number of available channels.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String
Read-only when running Yes

Values

Advantech and Measurement Computing

Differential Channels are configured for differential input.
SingleEnded Channels are configured for single-ended input.

The value for InputType on Advantech® and MCC boards is always read-only in
MATLAB. For Advantech boards, the setting is made in the Advantech Device Manager.
For Measurement Computing boards, the setting is made in InstaCal.

 InputType

1-93

National Instruments

{Differential} Channels are configured for differential
input.

SingleEnded Channels are configured for single-ended
input.

NonReferencedSingleEnded This channel configuration is used when
the input signal has its own ground
reference, which is tied to the negative
input of the instrumentation amplifier.

PseudoDifferential Channels are configured for
pseudodifferential input, which are all
referred to a common ground but this
ground is not connected to the computer
ground.

Sound Cards

{AC-Coupled} The input is coupled so that constant (DC) signal levels are
suppressed.

1 Base Properties — Alphabetical List

1-94

IsContinuous

Specify if operation continues until manually stopped

Description

When working with the session-based interface, use IsContinuous to specify that the
session operation runs until you execute stop. When set to true, the session will run
continuously, acquiring or generating data until stopped.

Values

{false}
Set the IsContinuous property to false to make the session operation stop
automatically. This property is set to false by default.

true

Set the IsContinuous property to true to make the session operation run until you
execute stop.

Examples

Create a session object, add an analog input channel, and set the session to run until
manually stopped:
s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');

s.IsContinuous = true

s =

Data acquisition session using National Instruments hardware:

 Will run continuously at 1000 scans/second until stopped.

 Operation starts immediately.

 Number of channels: 1

 index Type Device Channel InputType Range Name

 ----- ---- --------- ------- --------- ---------------- ----

 1 ai cDAQ1Mod1 ai0 Diff -10 to +10 Volts

 IsContinuous

1-95

See Also

Properties

IsDone

Functions

stop,startBackground

1 Base Properties — Alphabetical List

1-96

IsDone
Indicate if operation is complete

Description

When working with the session-based interface, the read-only IsDone property indicates
if the session operation is complete.

Tip IsDone indicates if the session object has completed acquiring or generating data.
IsRunning indicates if the operation is in progress, but the hardware may not be
acquiring or generating data. IsLogging indicates that the hardware is acquiring or
generating data.

Values
true

Value is true if the operation is complete.
false

Value is false if the operation is not complete.

Examples

Create an acquisition session and see if the operation is complete:

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'vVoltage');

s.queueOutputData(linspace(-1, 1, 1000)');

s.startBackground();

s.IsDone

ans =

 0

Issue a wait and see if the operation is complete:

 IsDone

1-97

wait(s)

s.IsDone

ans =

 1

See Also

startBackground

1 Base Properties — Alphabetical List

1-98

IsLogging
Indicate if hardware is acquiring or generating data

Description

When working with the session-based interface, the status of the read-only IsLogging
property indicates if the hardware is acquiring or generating data.

Tip IsLogging indicates that the hardware is acquiring or generating data. IsRunning
indicates if the operation is in progress, but the hardware may not be acquiring or
generating data. IsDone indicates if the session object has completed acquiring or
generating data.

Values
true

Value is true if the device is acquiring or generating data.
false

Value is false if the device is not acquiring or generating data.

Examples

Create a session and see if the operation is logging:

 s = daq.createSession('ni');

 addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'Voltage');

 s.queueOutputData(linspace(-1, 1, 1000)');

 startBackground(s);

 s.IsLogging

ans =

 1

Wait until the operation is complete:

 IsLogging

1-99

wait(s)

s.IsLogging

ans =

 0

See Also

Properties

IsRunning, IsDone

Functions

startBackground

1 Base Properties — Alphabetical List

1-100

IsNotifyWhenDataAvailableExceedsAuto
Control if NotifyWhenDataAvailableExceeds is set automatically

Description

When working with the session-based interface, the
IsNotifyWhenDataAvailableExceedsAuto property indicates if the
NotifyWhenDataAvailableExceeds property is set automatically, or you have set a
specific value.

Tip This property is typically used to set NotifyWhenDataAvailableExceeds back to
its default behavior.

Values

{true}

When the value is true, then the NotifyWhenDataAvailableExceeds property is
set automatically.

false

When the value is false, when you have set the
NotifyWhenDataAvailableExceeds property to a specific value.

Example

Enable Data Exceeds Notification

Change the IsNotifyWhenDataAvailableExceedsAuto to be able to set the
NotifyWhenDataAvailableExceeds property to a specific value.

Create a session and display the properties by clicking the Properties link.

s = daq.createSession('ni')

 IsNotifyWhenDataAvailableExceedsAuto

1-101

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

Properties, Methods, Events

 AutoSyncDSA: false

 NumberOfScans: 1000

 DurationInSeconds: 1

 Rate: 1000

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 100

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 500

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

 TriggersPerRun: 1

 Vendor: National Instruments

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

Change the IsNotifyWhenDataAvailableExceedsAuto to

s.IsNotifyWhenDataAvailableExceedsAuto = false

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

1 Base Properties — Alphabetical List

1-102

 No channels have been added.

See Also

Properties

NotifyWhenDataAvailableExceeds

Events

DataAvailable

 IsNotifyWhenScansQueuedBelowAuto

1-103

IsNotifyWhenScansQueuedBelowAuto
Control if NotifyWhenScansQueuedBelow is set automatically

Description

When working with the session-based interface, the
IsNotifyWhenScansQueuedBelowAuto property indicates if the
NotifyWhenScansQueuedBelow property is set automatically, or you have set a specific
value.

Values

{true}

When the value is true, then NotifyWhenScansQueuedBelow is set automatically.
false

When the value is false, you have set NotifyWhenScansQueuedBelow property to
a specific value.

Example

Enable Notification When Scans Reach Below Specified Range

Change the IsNotifyWhenScansQueuedBelowAuto to be able to set the
NotifyWhenScansQueuedBelow property to a specific value.

Create a session and display the properties by clicking the Properties link.

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

1 Base Properties — Alphabetical List

1-104

Properties, Methods, Events

 AutoSyncDSA: false

 NumberOfScans: 1000

 DurationInSeconds: 1

 Rate: 1000

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 100

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 500

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

 TriggersPerRun: 1

 Vendor: National Instruments

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

Change the IsNotifyWhenDataAvailableExceedsAuto to

s.IsNotifyWhenScansQueuedBelowAuto = false

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

See Also

Properties

NotifyWhenScansQueuedBelow, ScansQueued

 IsNotifyWhenScansQueuedBelowAuto

1-105

Events

DataRequired

1 Base Properties — Alphabetical List

1-106

IsRunning
Indicate if operation is still in progress

Description

When working with the session-based interface, the IsRunning status indicates if the
operation is still in progress.

Tip IsRunning indicates if the operation is in progress, but the hardware may not be
acquiring or generating data. IsLogging indicates that the hardware is acquiring or
generating data. IsDone indicate is if the session object has completed acquiring or
generating.

Values

true

When the value is true if the operation is in progress.
false

When the value is false if the operation is not in progress.

Examples

Create an acquisition session, add a DataAvailable event listener and start the
acquisition.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');

lh = s.addlistener('DataAvailable', @plotData);

function plotData(src,event)

 plot(event.TimeStamps, event.Data)

end

 IsRunning

1-107

startBackground(s);

See if the session is in progress.

s.IsRunning

ans =

 1

Wait until operation completes and see if session is in progress:

wait(s)

s.IsRunning

ans =

 0

See Also

Properties

IsLogging, IsDone

Functions

startBackground

1 Base Properties — Alphabetical List

1-108

IsSimulated
Indicate if device is simulated

Description

When working with the session-based interface, the IsSimulated property indicates if
the session is using a simulated device.

Values

true

When the value is true if the operation is in progress.
false

When the value is false if the operation is not in progress.

Examples

Discover available devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description

----- ------ --------- -----------------------------

1 ni cDAQ1Mod1 National Instruments NI 9201

2 ni cDAQ2Mod1 National Instruments NI 9201

3 ni Dev1 National Instruments USB-6211

4 ni Dev2 National Instruments USB-6218

5 ni Dev3 National Instruments USB-6255

6 ni Dev4 National Instruments USB-6363

7 ni PXI1Slot2 National Instruments PXI-4461

 IsSimulated

1-109

8 ni PXI1Slot3 National Instruments PXI-4461

Examine properties of NI 9201, with the device id cDAQ1Mod1 with the index 1.

d(1)

ans =

ni: National Instruments NI 9201 (Device ID: 'cDAQ1Mod1')

 Analog input subsystem supports:

 -10 to +10 Volts range

 Rates from 0.1 to 800000.0 scans/sec

 8 channels ('ai0','ai1','ai2','ai3','ai4','ai5','ai6','ai7')

 'Voltage' measurement type

This module is in slot 4 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Properties, Methods, Events

Click the Properties link to see the properties of the device.

 ChassisName: 'cDAQ1'

 ChassisModel: 'cDAQ-9178'

 SlotNumber: 4

 IsSimulated: true

 Terminals: [48x1 cell]

 Vendor: National Instruments

 ID: 'cDAQ1Mod1'

 Model: 'NI 9201'

 Subsystems: [1x1 daq.ni.AnalogInputInfo]

 Description: 'National Instruments NI 9201'

RecognizedDevice: true

Note that the IsSimulated value is true, indicating that this device is simulated.

See Also

Properties

IsLogging, IsDone

1 Base Properties — Alphabetical List

1-110

Functions

startBackground

 IsWaitingForExternalTrigger

1-111

IsWaitingForExternalTrigger
Indicates if synchronization is waiting for an external trigger

Description

When working with the session-based interface, the read-
onlyIsWaitingForExternalTrigger property indicates if the acquisition or generation
session is waiting for a trigger from an external device. If you have added an external
trigger, this property displays true, if not, it displays false.

See Also

addTriggerConnection

1 Base Properties — Alphabetical List

1-112

Line
Contain hardware lines added to device object

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Line is a vector of all the hardware lines contained by a digital I/O (DIO) object. Because
a newly created DIO object does not contain hardware lines, Line is initially an empty
vector. The size of Line increases as lines are added with the addline function, and
decreases as lines are removed with the delete function.

You can use Line to reference one or more individual lines. To reference a line, you must
know its MATLAB index and hardware ID. The MATLAB index is given by the Index
property, while the hardware ID is given by the HwLine property.

Characteristics
Usage DIO
Access Read/write
Data type Vector of lines
Read-only when running Yes

Values
Values are automatically defined when lines are added to the DIO object with the
addline function. The default value is an empty column vector.

Examples
Create the digital I/O object dio and add four input lines to it.

 Line

1-113

dio = digitalio('nidaq','Dev1');

addline(dio,0:3,'In');

To set a property value for the first line added (ID = 0), you can reference the line by its
index using the Line property.

line1 = dio.Line(1);

line1.Direction = 'Out'

See Also

Functions

addline, delete

Properties

HwLine, Index

1 Base Properties — Alphabetical List

1-114

LineName
Specify descriptive line name

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

LineName specifies a descriptive name for a hardware line. If a line name is defined,
then you can reference that line by its name. If a line name is not defined, then the line
must be referenced by its index. Line names are not required to be unique.

You can also define descriptive line names when lines are added to a digital I/O object
with the addline function.

Characteristics

Usage DIO, per line
Access Read/write
Data type String
Read-only when running Yes

Values

The default value is an empty string. To reference a line by name, it must contain only
letters, numbers, and underscores and must begin with a letter.

Examples

Create the digital I/O object dio and add four hardware lines to it.

 LineName

1-115

dio = digitalio('nidaq','Dev1');

addline(dio,0:3,'out');

To assign a descriptive name to the first line contained by dio:

line1 = dio.Line(1);

line1.LineName = 'Joe')

You can now reference this line by name instead of index.

dio.Joe.Direction = 'In')

See Also

Functions

addline

1 Base Properties — Alphabetical List

1-116

LogFileName
Specify name of disk file information is logged to

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You can log acquired data, device object property values and event information, and
hardware information to a disk file by setting the LoggingMode property to Disk or
Disk&Memory.

You can specify any value for LogFileName as long as it conforms to the MATLAB
software naming conventions: the name cannot start with a number and cannot contain
spaces. If no extension is specified as part of LogFileName, then daq is used. The default
value for LogFileName is logfile.daq.

You can choose whether an output file is overwritten or if multiple log files are created
with the LogToDiskMode property. Setting LogToDiskMode to Overwrite causes the
output file to be overwritten. Setting LogToDiskMode to Index causes new data files to
be created, each with an indexed name based on the value of LogFileName.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String
Read-only when running Yes

Values

The default value is logfile.daq.

 LogFileName

1-117

See Also

Properties

Logging, LoggingMode, LogToDiskMode

1 Base Properties — Alphabetical List

1-118

Logging

Indicate whether data is being logged to memory or disk file

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Along with the Running property, Logging reflects the state of an analog input object.
Logging can be On or Off.

Logging is automatically set to On when a trigger occurs. When Logging is On, acquired
data is being stored in memory or to a disk file.

Logging is automatically set to Off when the requested samples are acquired, an error
occurs, or a stop function is issued. When Logging is Off, you can still preview data
with the peekdata function provided Running is On. However, peekdata does not
guarantee that all the requested data is returned.

To guarantee that acquired data contains no gaps, is must be logged to memory or to
a disk file. Data stored in memory is extracted with the getdata function, while data
stored to disk is returned with the daqread function. The destination for logged data is
controlled with the LoggingMode property.

Characteristics

Usage AI, common to all channels
Access Read-only
Data type String
Read-only when running N/A

 Logging

1-119

Values

{Off} Data is not logged to memory or a disk file.
On Data is logged to memory or a disk file.

See Also

Functions

daqread, getdata, peekdata, stop

Properties

LoggingMode, Running

1 Base Properties — Alphabetical List

1-120

LoggingMode

Specify destination for acquired data

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You can set LoggingMode to Disk, Memory, or Disk&Memory. When you set
LoggingMode to Disk, then acquired data (as well as device object and hardware
information) is streamed to a disk file. If LoggingMode is set to Memory, then acquired
data is stored in the data acquisition engine. If LoggingMode is set to Disk&Memory,
then acquired data is stored in the data acquisition engine and is streamed to a disk file.

When logging to the engine, you must extract the data with the getdata function. If you
do not extract this data, and the amount of data stored in memory reaches the limit for
the data acquisition object (see daqmem(obj)), a DataMissed event occurs. At this point,
the acquisition stops.

When logging to disk, you can specify the log filename with the LogFileName property,
and you can control the number of log files created with the LogToDiskMode property.
You can return data stored in a disk file to the MATLAB workspace with the daqread
function.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String
Read-only when running Yes

 LoggingMode

1-121

Values

Disk Acquired data is logged to a disk file.
{Memory} Acquired data is logged to memory.
Disk&Memory Acquired data is logged to a disk file and to memory.

See Also

Functions

daqread, getdata

Properties

LogFileName, LogToDiskMode

1 Base Properties — Alphabetical List

1-122

LogToDiskMode

Specify whether data, events, and hardware information are saved to one or more disk
files

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

LogToDiskMode can be set to Overwrite or Index. If LogToDiskMode is set
to Overwrite, then the log file is overwritten each time start is issued. If
LogToDiskMode is set to Index, a different disk file is created each time start is issued
and these rules are followed:

• The first log filename is specified by the initial value of LogFileName.
• If the specified file already exists, it is overwritten and no warning is issued.
• LogFileName is automatically updated with a numeric identifier after each file

is written. For example, if LogFileName is initially specified as data.daq, then
data.daq is the first filename, data01.daq is the second filename, and so on.

Separate analog input objects are logged to separate files. You can return data stored in a
disk file to the MATLAB workspace with the daqread function. If an error occurs during
data logging, an error message is returned and data logging is stopped.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String
Read-only when running Yes

 LogToDiskMode

1-123

Values

Index Multiple log files are written, each with an indexed
filename based on the LogFileName property.

{Overwrite} The log file is overwritten.

See Also

Functions

daqread

Properties

LogFileName, LoggingMode

1 Base Properties — Alphabetical List

1-124

ManualTriggerHwOn
Specify hardware device starts at manual trigger

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You can set ManualTriggerHwOn to Start or Trigger, and it has an effect only when
the TriggerType property value is Manual. If ManualTriggerHwOn is Start, then
the hardware device associated with your device object starts running after you issue
the start function. If ManualTriggerHwOn is Trigger, then the hardware device
associated with your device object starts acquiring after you issue both the start
function and you execute a manual trigger with the trigger function. You can use
trigger only when you configure the TriggerType property to Manual.

You should configure ManualTriggerHwOn to Trigger when you want to synchronize
the input and output of data, or you require more control over when your hardware
starts. Note that you cannot use peekdata or acquire pretrigger data when you use this
value. Additionally, you should not use this value with repeated triggers because the
subsequent behavior is undefined.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String
Read-only when running Yes

Values

{Start} Start the hardware after the start function is issued.

 ManualTriggerHwOn

1-125

Trigger Start the hardware after the trigger function is issued.

Examples

Create the analog input object ai and the analog output object ao for a sound card and
add two channels to each device object.

ai = analoginput('winsound');

addchannel(ai,1:2);

ao = analogoutput('winsound');

addchannel(ao,1:2);

To operate the sound card in full duplex mode, and to minimize the time between when
ai starts and ao starts, you configure ManualTriggerHwOn to Trigger for ai and
TriggerType to Manual for both ai and ao.

[ai ao].TriggerType = 'Manual')

ai.ManualTriggerHwOn = 'Trigger';

The analog input and analog output hardware devices will both start after you issue
the trigger function. For a detailed example that uses ManualTriggerHwOn, refer to
“Start Multiple Device Objects”.

See Also

Functions

peekdata, start, trigger

Properties

TriggerType

1 Base Properties — Alphabetical List

1-126

MaxSamplesQueued
Indicate maximum number of samples that can be queued in engine

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

MaxSamplesQueued indicates the maximum number of samples allowed in the analog
output queue.

If the BufferingMode is set to Auto, the default value is calculated by the engine, and
is based on the memory resources of your system. You can override the default value of
MaxSamplesQueued with the daqmem function.

If the BufferingMode is set to Manual, MaxSamplesQueued is updated to indicate the
maximum number of samples allowed in the analog output queue based on the number of
buffers selected in BufferingConfig.

The value of MaxSamplesQueued can affect the behavior of putdata. For example, if the
queued data exceeds the value of MaxSamplesQueued, then putdata becomes a blocking
function until there is enough space in the queue to add the additional data.

Characteristics

Usage AO, common to all channels
Access Read-only
Data type Double
Read-only when running N/A

Values

The value is calculated by the data acquisition engine.

 MaxSamplesQueued

1-127

See Also

Functions

daqmem, putdata

1 Base Properties — Alphabetical List

1-128

MaxSoundPressureLevel
Sound pressure level for microphone channels

Description

When working with the session-based interface, use the MaxSoundPressureLevel set
the maximum sound pressure of the microphone channel in decibels.

Values

The maximum sound pressure level is based on the sensitivity and the voltage range of
your device. When you sent your device Sensitivity, the MaxSoundPressureLevel
value is automatically corrected to match the specified sensitivity value and the device
voltage range. You can also specify any acceptable pressure level in decibels. Refer to
your microphone specifications for more information.

Example

Change Maximum Sound Pressure of Microphone

Change the Sensitivity of a microphone channel and set the maximum sound pressure
level to 10.

Create a session and add a microphone channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

 MaxSoundPressureLevel

1-129

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Set the channel’s sensitivity to 3 0.037.

ch.Sensitivity = 0.037

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037

MaxSoundPressureLevel: 136

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -135 to +135 Pascals

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Set the channel’s maximum sound pressure to 10 dbs.

ch.MaxSoundPressureLevel = 10

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037

MaxSoundPressureLevel: 10

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -135 to +135 Pascals

1 Base Properties — Alphabetical List

1-130

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

 MeasurementType

1-131

MeasurementType

Channel measurement type

Description

When working with the session-based interface, the MeasurementType property
displays the selected measurement type for your channel.

Values

You can only use Audio measurement type with multichannel audio devices.

Counter measurement types include:

• 'EdgeCount' (input)
• 'PulseWidth' (input)
• 'Frequency'(input)
• 'Position'(input)
• 'PulseGeneration' (output)

Analog measurement types include:

• 'Voltage' (input and output)
• 'Thermocouple' (input)
• 'Current' (input and output)
• 'Accelerometer' (input)
• 'RTD' (input)
• 'Bridge' (input)
• 'Microphone' (input)
• 'IEPE' (input)

1 Base Properties — Alphabetical List

1-132

Examples

Create a session object, add a counter input channel, with the 'EdgeCount'
MeasurementType.
s = daq.createSession('ni');

ch = addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

addAnalogInputChannel, addAnalogOutputChannel, addCounterInputChannel,
addCounterOutputChannel,

 Name

1-133

Name
Specify descriptive name for the channel

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

When you add a channel , a descriptive name is automatically generated and stored in
Name. The name is a concatenation the name of the adaptor, the device ID, and the device
object type. You can change the value of Name at any time.

Values

The value is defined when you add the channel.

Examples

Create the analog input object ai for a sound card.

ai = analoginput('winsound');

The descriptive name for ai is given by

ai.Name

ans =

winsound0-AI

Change the name to WindowsSoundChannel and access the name

ai.Name='WindowsSoundChannel'

1 Base Properties — Alphabetical List

1-134

Name
Specify descriptive name for the channel

Description

When you add a channel , a descriptive name is stored in Name. By default there is no
name assigned to the channel. You can change the value of Name at any time.

Values

You can specify a string value for the name.

Examples

Change the name of an analog input channel

Create a session and add an analog input channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'Dev1', 0, 'Voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev1':

 Coupling: DC

 TerminalConfig: Differential

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

Change Name to 'AI-Voltage'.

ch.Name = 'AI-Voltage'

 Name

1-135

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev1':

 Coupling: DC

 TerminalConfig: Differential

 Range: -10 to +10 Volts

 Name: 'AI-Voltage'

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

See Also

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-136

NativeOffset
Indicate offset to use when converting between native data format and doubles

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

NativeOffset, along with NativeScaling, is used to convert data between the native
hardware format and doubles.

For analog input objects, you return native data from the engine with the getdata
function. Additionally, if you log native data to a .daq file, then you can read back that
data using the daqread function. The formula for converting from native data to doubles
is

doubles data = (native data)(native scaling) + native offset

For analog output objects, you queue native data in the engine with the putdata
function. The formula for converting from doubles to native data is

native data = (doubles data)(native scaling) + native offset

You return the native data type of your hardware device with the daqhwinfo function.
Note that the NativeScaling value for a given channel might change if you change its
InputRange (AI) or OutputRange (AO) property value.

You might want to return or queue data in native format to conserve memory and to
increase data acquisition or data output speed.

Characteristics
Usage AI, AO, per channel
Access Read-only
Data type Double

 NativeOffset

1-137

Read-only when running N/A

Values

The default value is device-specific.

Examples

Create the analog input object ai for a National Instruments board, and add eight
channels to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:7);

Start ai, collect one second of data for each channel, and extract the data from the
engine using the native format of the device.

start(ai)

nativedata = getdata(ai,1000,'native');

You can return the native data type of the board with the daqhwinfo function.

out = daqhwinfo(ai);

out.NativeDataType

ans =

double

Convert the data to doubles using the NativeScaling and NativeOffset properties.

scaling = ai.Channel(1).NativeScaling;

offset = ai.Channel(1).NativeOffset;

data = double(nativedata)*scaling + offset;

See Also

Functions

daqhwinfo, daqread, getdata, putdata

1 Base Properties — Alphabetical List

1-138

Properties

InputRange, NativeScaling, OutputRange

 NativeScaling

1-139

NativeScaling
Indicate scaling to use when converting between native data format and doubles

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

NativeScaling, along with NativeOffset, is used to convert data between the native
hardware format and doubles.

For analog input objects, you return native data from the engine with the getdata
function. Additionally, if you log native data to a .daq file, then you can read back that
data using the daqread function. The formula for converting from native data to doubles
is

doubles data = (native data)(native scaling) + native offset

For analog output objects, you queue native data in the engine with the putdata
function. The formula for converting from doubles to native data is

native data = (doubles data)(native scaling) + native offset

You return the native data type of your hardware device with the daqhwinfo function.
Note that the NativeScaling value for a given channel might change if you change its
InputRange (AI) or OutputRange (AO) property value.

You might want to return or queue data in native format to conserve memory and to
increase data acquisition or data output speed.

Characteristics

Usage AI, AO, per channel
Access Read-only

1 Base Properties — Alphabetical List

1-140

Data type Double
Read-only when running N/A

Values

The default value is device-specific.

See Also

Functions

daqhwinfo, daqread, getdata, putdata

Properties

InputRange, NativeOffset, OutputRange

 NominalBridgeResistance

1-141

NominalBridgeResistance
Resistance of sensor

Description

When working with the session-based interface, the NominalBridgeResistance
property displays the resistance of a bridge– based sensor in ohms. This value is used to
calculate voltage.

You can specify any accepted positive value in ohms. The default value is 0 until you
change it. You must set the resistance to use the channel.

See Also

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-142

NotifyWhenDataAvailableExceeds
Control firing of DataAvailable event

Description

When working with the session-based interface the DataAvailable event is fired
when the scans available to the session object exceeds the value specified in the
NotifyWhenDataAvailableExceeds property.

Values

By default the DataAvailable event fires when 1/10 second worth of data is available
for analysis. To specify a different threshold change this property to control when
DataAvailable fires.

Examples

Control Firing of Data Available Event

Add an event listener to display the total number of scans acquired and fire the event
when the data available exceeds specified amount.

Create the session and add an analog input voltage channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev4', 1, 'Voltage');

lh = addlistener(s,'DataAvailable', ...

 @(src, event) disp(s.ScansAcquired));

The default the Rate is 1000 scans per second. The session is automatically configured to
fire the DataAvailable notification 10 times per second.

Increase the Rate to 800,000 scans per second and the DataAvailable notification
automatically fires 10 times per second.

s.Rate=800000;

 NotifyWhenDataAvailableExceeds

1-143

s.NotifyWhenDataAvailableExceeds

ans =

 80000

Running the acquisition causes the number of scans acquired to be displayed by the
callback 10 times.

data = startForeground(s);

 80000

 160000

 240000

 320000

 400000

 480000

 560000

 640000

 720000

 800000

Increase NotifyWhenDataAvailableExceeds to 160,000.
NotifyWhenDataAvailableExceeds is no longer configured automatically when the
Rate changes.

s.NotifyWhenDataAvailableExceeds = 160000;

s.IsNotifyWhenDataAvailableExceedsAuto

ans =

 0

Start the acquisition. The DataAvailable event is fired only five times per second.

data = startForeground(s);

1 Base Properties — Alphabetical List

1-144

 160000

 320000

 480000

 640000

 800000

Set IsNotifyWhenDataAvailableExceedsAuto back to true.

s.IsNotifyWhenDataAvailableExceedsAuto = true;

s.NotifyWhenDataAvailableExceeds

ans =

 80000

This causes NotifyWhenDataAvailableExceeds to set automatically when Rate
changes.

s.Rate = 50000;

s.NotifyWhenDataAvailableExceeds

ans =

 5000

See Also

Properties

IsNotifyWhenDataAvailableExceedsAuto

Events

DataAvailable

Functions

addlistener, startBackground

 NotifyWhenScansQueuedBelow

1-145

NotifyWhenScansQueuedBelow
Control firing of DataRequired event

Description

When working with the session-based interface to generate output signals
continuously, the DataRequired event is fired when you need to queue more data.
This occurs when the ScansQueued property drops below the value specified in the
NotifyWhenScansQueuedBelow property.

Values

By default the DataRequired event fires when 1/2 second worth of data remains in
the queue. To specify a different threshold, change the this property to control when
DataRequired is fired.

Example

Control When DataRequired Event is Fired

Specify a threshold below which the DataRequired event fires.

Create a session and add an analog output channel.

s = daq.createSession('ni')

addAnalogOutputChannel(s,'cDAQ1Mod2', 0, 'Voltage')

Queue some output data.

outputData = (linspace(-1, 1, 1000))';

s.queueOutputData(outputData);

Set the threshold of scans queued to 100.

s.NotifyWhenScansQueuedBelow = 100;

1 Base Properties — Alphabetical List

1-146

Add an anonymous listener and generate the signal in the background:

lh = s.addlistener('DataRequired', ...

@(src,event) src.queueOutputData(outputData));

startBackground(s);

See Also

Properties

ScansQueued, IsNotifyWhenScansQueuedBelowAuto

Events

DataRequired

 NumberOfScans

1-147

NumberOfScans
Number of scans for operation when starting

Description

When working with the session-based interface, use the NumberOfScans property to
specify the number of scans the session will acquire during the operation. Changing
the number of scans changes the duration of an acquisition. When the session contains
output channels, NumberOfScans becomes a read only property and the number of scans
in a session is determined by the amount of data queued.

Tips

• To specify length of the acquisition, use DurationInSeconds.

• To control length of the output operation, use queueOutputData.

Values

You can change the value only when you use input channels.

Example

Change Number of Scans

Create an acquisition session, add an analog input channel, and display the
NumberOfScans.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

s.NumberOfScans

ans =

1 Base Properties — Alphabetical List

1-148

 1000

Change the NumberOfScans property.
s.NumberOfScans = 2000

s =

Data acquisition session using National Instruments hardware:

 Will run for 2000 scans (2 seconds) at 1000 scans/second.

 Operation starts immediately.

 Number of channels: 1

 index Type Device Channel InputType Range Name

 ----- ---- --------- ------- --------- ---------------- ----

 1 ai cDAQ1Mod1 ai0 Diff -10 to +10 Volts

See Also

Properties

ScansQueued, DurationInSeconds

Functions

startForeground, startBackground, queueOutputData

 Offset

1-149

Offset
Specify DC offset of waveform

Description

When using waveform function generation channels, Offset represents offsetting of a
signal from zero, or the mean value of the waveform.

Values

The waveform offset can be between –5 and 5. Ensure that Gain x Voltage + Offset
falls within the valid rages of output voltage of the device.

Example

Change the offset of the waveform function generation channel to 2 volts.

s = daq.createSession('digilent');

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine');

fgenCh.Offset = 2

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 0

 Offset: 2

 Frequency: 4096

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

1 Base Properties — Alphabetical List

1-150

See Also

Properties

GainPhaseDutyCycle

Functions

addFunctionGeneratorChannel

 OutputRange

1-151

OutputRange

Specify range of analog output hardware subsystem

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

OutputRange is a two-element vector that specifies the range of voltages that can be
output by the analog output (AO) subsystem. You should configure OutputRange so that
the maximum dynamic range of your hardware is utilized. For many devices, the output
range is expressed in terms of the gain and polarity.

AO subsystems have a finite number of OutputRange values that you can set. If
an output range is specified but does not match a valid range, then the next highest
supported range is automatically selected by the engine. If OutputRange exceeds the
range of valid values, then an error is returned. Use the daqhwinfo function to return
the output ranges supported by your board.

Because the engine can set the output range to a value that differs from the value
you specify, you should return the actual output range for each channel using the get
function or the device object display summary. Alternatively, you can use the setverify
function, which sets the OutputRange value and then returns the actual value that is
set.

Characteristics

Usage AO, per channel
Access Read/write
Data type Two-element vector of doubles
Read-only when running Yes

1 Base Properties — Alphabetical List

1-152

Values
The default value is determined by the hardware driver.

Examples
Create the analog output object ao for a National Instruments board and add two
hardware channels to it.

ao = analogoutput('nidaq','Dev1');

addchannel(ao,0:1);

You can return the output ranges supported by the board with the OutputRanges field
of the daqhwinfo function.

out = daqhwinfo(ao);

out.OutputRanges

ans =

 0.0000 10.0000

 -10.0000 10.0000

To configure both channels contained by ao to output signals between -10 volts and 10
volts:

ao.Channel.OutputRange = [-10 10];

Alternatively, you can use the setverify function to configure and return the
OutputRange value.

ActualRange = setverify(ao.Channel,'OutputRange',[-10 10]);

See Also

Functions

daqhwinfo, setverify

Properties

Units, UnitsRange

 Parent

1-153

Parent
Indicate parent (device object) of channel or line

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

The parent of a channel (line) is defined as the device object that contains the channel
(line).

You can create a copy of the device object containing a particular channel or line by
returning the value of Parent. You can treat this copy like any other device object. For
example, you can configure property values, add channels or lines to it, and so on.

Characteristics

Usage AI, AO, per channel; DIO, per line
Access Read-only
Data type Device object
Read-only when running N/A

Values

The value is defined when channels or lines are added to the device object.

Examples

Create the analog input object ai for a National Instruments board and add three
hardware channels to it.

1 Base Properties — Alphabetical List

1-154

ai = analoginput('nidaq','Dev1');

chans = addchannel(ai,0:2);

To return the parent for channel 2:

parent = ai.Channel(2).Parent;

parent is an exact copy of ai.

isequal(ai,parent)

ans =

 1

 Phase

1-155

Phase
Waveform phase

Description

In a function generation channel, the Phase property specifies the period of waveform
cycle from its point of origin. Specify the values for Phase in time units.

Example

Set the phase of a waveform function generation channel to 33.

s = daq.createSession('digilent')

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine')

fgenCh.Phase = 33

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 33

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 Frequency: 4096

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

1 Base Properties — Alphabetical List

1-156

Port
Specify port ID

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Hardware lines are often grouped together as a port. Digital I/O subsystems can consist
of multiple ports and typically have eight lines per port. When adding hardware lines
to a digital I/O object with addline, you can specify the port ID. The port ID is stored
in the Port property. If the port ID is not specified, then the smallest port ID value is
automatically used.

Characteristics

Usage DIO, per line
Access Read-only
Data type Double
Read-only when running N/A

Values

The port ID is defined when line are added to the digital I/O object with addline.

Examples

Create the digital I/O object dio and add two hardware channels to it.

dio = digitalio('nidaq','Dev1');

addline(dio,0:1,'In');

 Port

1-157

You can use Port property to return the port IDs associated with the lines contained by
dio.

dio.Line.Port

ans =

 [0]

 [0]

See Also

Functions

addline

1 Base Properties — Alphabetical List

1-158

R0
Specify resistance value

Description

Use this property to specify the resistance of the device.

You can specify any acceptable value in ohms. When you add an RTD Channel, the
resistance is unknown and the R0 property displays Unknown. You must change this
value to set the resistance of this device to the temperature you want.

Example

Set RTD Channels Resistance

Create a session and add an RTD channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Change the channels resistance to 100°C.

ch.R0 = 100

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 Units: Celsius

 RTDType: Unknown

 RTDConfiguration: Unknown

 R0: 100

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

 R0

1-159

 ID: 'ai3'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

Properties

RTDConfiguration, RTDType

1 Base Properties — Alphabetical List

1-160

Range
Specify channel measurement range

Description

When working with the session-based interface, use the Range property to indicate the
measurement range of a channel.

Values

Range is not applicable for counter channels. For analog channels, value is dependent
on the measurement type. This property is read-only for all measurement types except
'Voltage'. You can specify a range in volts for analog channels.

Example

Specify the range of an analog input voltage channel.

Create a session and add an analog input channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3,'voltage');

Set the range to —60 to +60 volts.

ch.Range = [-60,60];

See Also

daq.createSession,addAnalogInputChannel

 Rate

1-161

Rate
Rate of operation in scans per second

Description

When working with the session-based interface, use the Rate property to set the number
of scans per second.

Note: Many hardware devices accept fractional rates.

Tip On most devices, the hardware limits the exact rates that you can set. When you set
the rate, Data Acquisition Toolbox sets the rate to the next higher rate supported by the
hardware. If the exact rate affects your analysis of the acquired data, obtain the actual
rate after you set it, and then use that in your analysis.

Values

You can set the rate to any positive nonzero scalar value supported by the hardware in
its current configuration.

Examples

Change Session Rate

Create a session and add an analog input channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

Change the rate to 10000.

s.Rate = 10000

s =

1 Base Properties — Alphabetical List

1-162

Data acquisition session using National Instruments hardware:

 Will run for 1 second (10000 scans) at 10000 scans/second.

 Operation starts immediately.

 Number of channels: 1

 index Type Device Channel InputType Range Name

 ----- ---- --------- ------- --------- ---------------- ----

 1 ai cDAQ1Mod1 ai1 Diff -10 to +10 Volts

Properties, Methods, Events

See Also

Properties

DurationInSeconds, NumberOfScans, RateLimit

 RateLimit

1-163

RateLimit
Limit of rate of operation based on hardware configuration

Description

In the session-based interface, the read-only RateLimit property displays the minimum
and maximum rates that the session supports, based on the device configuration for the
session.

Tip RateLimit changes dynamically as the session configuration changes.

Example

Display Sessions Rate Limit

Create session and add an analog input channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

Examine the session’s rate limit.

s.RateLimit

ans =

 1.0e+05 *

 0.0000 2.5000

See Also

Properties

Rate

1 Base Properties — Alphabetical List

1-164

RepeatOutput
Specify number of additional times queued data is output

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

To send data to an analog output subsystem, it must first be queued in the data
acquisition engine with the putdata function. If you want to continuously output the
same data, you can use multiple calls to putdata. However, because each putdata call
consumes memory, a long output sequence can quickly bring your system to halt.

As an alternative to putdata, you can continuously output previously queued data
using RepeatOutput. Because RepeatOutput requeues the data, additional memory
resources are not consumed. While the data is being output, you cannot add additional
data to the queue.

Characteristics
Usage AO, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

Values
The default value is zero.

Examples
Create the analog output object ao for a sound card and add one channel to it.

 RepeatOutput

1-165

ao = analogoutput('winsound');

chans = addchannel(ao,1);

To queue one second of data:

data = sin(linspace(0,10,8000))';

putdata(ao,data)

To continuously output data for 10 seconds:

ao.RepeatOutput = 9

See Also

Functions

putdata

1 Base Properties — Alphabetical List

1-166

RTDConfiguration
Specify wiring configuration of RTD device

Description

Use this property to specify the wiring configuration for measuring resistance.

When you create an RTD channel, the wiring configuration is unknown and the
RTDConfiguration property displays Unknown. You must change this to one of the
following valid configurations:

• TwoWire

• ThreeWire

• FourWire

Example

Specify Channel’s RTD Configuration

Specify an RTD channels wiring configuration.

Create a session and add an RTD channel to it.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Change the RTDConfiguration to ThreeWire.

ch.RTDConfiguration = 'ThreeWire'

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 Units: Celsius

 RTDType: Unknown

 RTDConfiguration: ThreeWire

 RTDConfiguration

1-167

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

 ID: 'ai3'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

Properties

R0, RTDType

1 Base Properties — Alphabetical List

1-168

RTDType
Specify sensor sensitivity

Description

Use this property to specify the sensitivity of a standard RTD sensor in the session-based
interface. A standard RTD sensor is defined as a 100–ohm platinum sensor.

When you create an RTD channel, the sensitivity is unknown and the RTDType property
displays Unknown. You must change this to one of these valid values:

• Pt3750

• Pt3851

• Pt3911

• Pt3916

• Pt3920

• Pt3928

Example

Set RTD Sensor Type

Set an RTD sensor’s sensitivity type.

Create a session and add an RTD channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Set the RTDType to Pt3851.

ch.RTDType = 'Pt3851'

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 RTDType

1-169

 Units: Celsius

 RTDType: Pt3851

 RTDConfiguration: ThreeWire

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

 ID: 'ai3'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

addAnalogInputChannel

Properties

RTDConfiguration, RTDType

1 Base Properties — Alphabetical List

1-170

Running
Indicate whether device object is running

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Along with the Logging or Sending property, Running reflects the state of an analog
input or analog output object. Running can be On or Off.

Running is automatically set to On once the start function is issued. When Running is
On, you can acquire data from an analog input device or send data to an analog output
device after the trigger occurs. For digital I/O objects, Running is typically used to
indicate if time-based events are being generated.

Running is automatically set to Off once the stop function is issued, the specified data
is acquired or sent, or a run-time error occurs. When Running is Off, you cannot acquire
or send data. However, you can acquire one sample with the getsample function, or
send one sample with the putsample function.

Characteristics

Usage AI, AO, DIO, common to all channels and lines
Access Read-only
Data type String
Read-only when running N/A

Values

{Off} The device object is not running.

 Running

1-171

On The device object is running.

See Also

Functions

getsample, putsample, start

Properties

Logging, Sending

1 Base Properties — Alphabetical List

1-172

RuntimeErrorFcn
Specify callback function to execute when run-time error occurs

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A run-time error event is generated immediately after a run-time error occurs. This event
executes the callback function specified for RuntimeErrorFcn. Additionally, a toolbox
error message is automatically displayed to the MATLAB workspace. If an error occurs
that is not explicitly handled by the toolbox, then the hardware-specific error message is
displayed.

The default value for RunTimeErrorFcn is daqcallback, which displays the event
type, the time the event occurred, and the device object name along with the error
message.

Run-time error event information is stored in the Type and Data fields of the EventLog
property. The Type field value is Error. The Data field values are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
RelSample The acquired (AI) or output (AO) sample number when the event

occurred.
String The descriptive error message.

Run-time errors include hardware errors and timeouts. Run-time errors do not include
configuration errors such as setting an invalid property value.

Characteristics

Usage AI, AO, common to all channels

 RuntimeErrorFcn

1-173

Access Read/write
Data type String
Read-only when running No

Values

The default value is daqcallback.

See Also

Functions

daqcallback

Properties

EventLog, Timeout

1 Base Properties — Alphabetical List

1-174

SampleRate
Specify per-channel rate at which analog data is converted to digital data, or vice versa

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

SampleRate specifies the per-channel rate (in samples/second) that an analog input (AI)
or analog output (AO) subsystem converts data. AI subsystems convert analog data to
digital data, while AO subsystems convert digital data to analog data.

AI and AO subsystems have a finite (though often large) number of valid sampling
rates. If you specify a sampling rate that does not match one of the valid values, the
data acquisition engine automatically selects the nearest available sampling rate. In
most data acquisition hardware, some valid sample rates can be non integers. See “The
Sampling Rate” for more info about valid sample rates.

Because the engine can set the sampling rate to a value that differs from the value
you specify, you should return the actual sampling rate using the get function or the
device object display summary. Alternatively, you can use the setverify function,
which sets the SampleRate value and then returns the actual value that is set. To
find out the range of sampling rates supported by your board, use the propinfo
function. Additionally, because the actual sampling rate depends on the number of
channels contained by the device object and the ChannelSkew property value (AI only),
SampleRate should be the last property you set before starting the device object.

Characteristics

Usage AI, AO, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

 SampleRate

1-175

Values

The default value is obtained from the hardware driver.

Examples

Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');

addchannel(ai,1:2);

You can find out the range of valid sampling rates with the ConstraintValue field of
the propinfo function.

rates = propinfo(ai,'SampleRate');

rates.ConstraintValue

ans =

 8000 48000

To configure the per-channel sampling rate to 48 kHz:

ai.SampleRate = 48000

Alternatively, you can use the setverify function to configure and return the
SampleRate value.

ActualRate = setverify(ai,'SampleRate',48000);

See Also

Functions

propinfo, setverify

Properties

ChannelSkew

1 Base Properties — Alphabetical List

1-176

SamplesAcquired
Indicate number of samples acquired per channel

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

SamplesAcquired is continuously updated to reflect the current number of samples
acquired by an analog input object. It is reset to zero after a start function is issued.

Use the SamplesAvailable property to find out how many samples are available to be
extracted from the engine.

Characteristics

Usage AI, common to all channels
Access Read-only
Data type Double
Read-only when running N/A

Values

The value is continuously updated to reflect the current number of samples acquired. The
default value is zero.

See Also

Functions

start

 SamplesAcquired

1-177

Properties

SamplesAvailable

1 Base Properties — Alphabetical List

1-178

SamplesAcquiredFcn
Specify callback function to execute when predefined number of samples is acquired for
each channel group member

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A samples acquired event is generated immediately after the number of samples
specified by the SamplesAcquiredFcnCount property is acquired for each
channel group member. This event executes the callback function specified for
SamplesAcquiredFcn.

The samples acquired event is executed regardless of its waiting time in the queue.

Use SamplesAcquiredFcn to trigger an event each time a specified number of samples
is acquired. To process samples at regular time intervals, use the TimerFcn property.

Samples acquired event information is not stored in the EventLog property. When the
callback function is executed, the second argument is a structure containing two fields.
The Type field value is set to the string 'SamplesAcquired', and the Data field values
are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
RelSample The acquired sample number when the event occurred.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String

 SamplesAcquiredFcn

1-179

Read-only when running No

Values

The default value is an empty string.

See Also

Properties

EventLog, SamplesAcquiredFcnCount, TimerFcn

1 Base Properties — Alphabetical List

1-180

SamplesAcquiredFcnCount
Specify number of samples to acquire for each channel group member before samples
acquired event is generated

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A samples acquired event is generated immediately after the number of samples
specified by SamplesAcquiredFcnCount is acquired for each channel group member.
This event executes the callback function specified by the SamplesAcquiredFcn
property.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

Values

The default value is 1024.

See Also

Properties

SamplesAcquiredFcn

 SamplesAvailable

1-181

SamplesAvailable

Indicate number of samples available per channel in engine

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

For analog input (AI) objects, SamplesAvailable indicates the number of samples
that can be extracted from the engine for each channel group member with the getdata
function. For analog output (AO) objects, SamplesAvailable indicates the number of
samples that have been queued with the putdata function, and can be sent (output) to
each channel group member.

After data has been extracted (AI) or output (AO), the SamplesAvailable value is
reduced by the appropriate number of samples. For AI objects, SamplesAvailable is
reset to zero after a start function is issued.

For AI objects, use the SamplesAcquired property to find out how many samples
have been acquired since the start function was issued. For AO objects, use the
SamplesOutput property to find out how many samples have been output since the
start function was issued.

Characteristics

Usage AI, AO, common to all channels
Access Read-only
Data type Double
Read-only when running N/A

1 Base Properties — Alphabetical List

1-182

Values

The value is automatically updated based on the number of samples acquired (analog
input) or sent (analog output). The default value is zero.

See Also

Functions

start

Properties

SamplesAcquired, SamplesOutput

 SamplesOutput

1-183

SamplesOutput
Indicate number of samples output per channel from engine

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

SamplesOutput is continuously updated to reflect the current number of samples output
by an analog output object. It is reset to zero after the device objects stops and data has
been queued with the putdata function.

Use the SamplesAvailable property to find out how many samples are available to be
output from the engine.

Characteristics
Usage AO, common to all channels
Access Read-only
Data type Double
Read-only when running N/A

Values
The value is continuously updated to reflect the current number of samples output. The
default value is zero.

See Also

Functions

putdata

1 Base Properties — Alphabetical List

1-184

Properties

SamplesAvailable

 SamplesOutputFcn

1-185

SamplesOutputFcn
Specify callback function to execute when predefined number of samples is output for
each channel group member

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A samples output event is generated immediately after the number of samples specified
by the SamplesOutputFcnCount property is output for each channel group member.
This event executes the callback function specified for SamplesOutputFcn.

Use SamplesOutputFcn to trigger an event each time a specified number of samples is
output. To process samples at regular time intervals, use the TimerFcn property.

Samples output event information is not stored in the EventLog property. When the
callback function is executed, the second argument is a structure containing two fields.
The Type field value is set to the string 'SamplesOutput', and the event Data field
values are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
RelSample The output sample number when the event occurred.

Characteristics

Usage AO, common to all channels
Access Read/write
Data type String
Read-only when running No

1 Base Properties — Alphabetical List

1-186

Values

The default value is an empty string.

See Also

Properties

EventLog, SamplesOutputFcnCount

 SamplesOutputFcnCount

1-187

SamplesOutputFcnCount
Specify number of samples to output for each channel group member before samples
output event is generated

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A samples output event is generated immediately after the number of samples specified
by SamplesOutputFcnCount is output for each channel group member. This event
executes the callback function specified by the SamplesOutputFcn property.

Characteristics

Usage AO, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

Values

The default value is 1024.

See Also

Properties

SamplesOutputFcn

1 Base Properties — Alphabetical List

1-188

SamplesPerTrigger
Specify number of samples to acquire for each channel group member for each trigger
that occurs

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

SamplesPerTrigger specifies the number of samples to acquire for each analog input
channel group member for each trigger that occurs. If SamplesPerTrigger is set to
Inf, then the analog input object continually acquires data until a stop function is
issued or an error occurs.

The default value of SamplesPerTrigger is calculated by the data acquisition engine
such that one second of data is acquired. This calculation is based on the value of
SampleRate.

Characteristics
Usage AI, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

Values
The default value is set by the engine such that one second of data is acquired.

Examples
Create the analog input object ai for a sound card and add two channels to it.

 SamplesPerTrigger

1-189

ai = analoginput('winsound');

addchannel(ai,1:2);

By default, a one second acquisition in which 8000 samples are acquired for each channel
is defined. To define a two second acquisition at the same sampling rate:

ai.SamplesPerTrigger = 16000)

See Also

Functions

stop

Properties

SampleRate

1 Base Properties — Alphabetical List

1-190

ScansAcquired
Number of scans acquired during operation

Description

In the session-based interface, the ScansAcquired property displays the number of
scans acquired after you start the operation using startBackground.

Values

The read-only value represents the number of scans acquired by the hardware. This
value is reset each time you call startBackground.

Example

Display Number of Scans Acquired

Acquire analog input data and display the number of scans acquired.

Create a session, add an analog input channel,

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'Dev1','ai1','voltage');

See how many scan the session had acquired.

s.ScansAcquired

ans =

 0

Start the acquisition and see how many scans the session has acquired

startForeground(s);

s.ScansAcquired

 ScansAcquired

1-191

ans =

 1000

See Also

Properties

NumberOfScans, ScansOutputByHardware

Functions

startBackground

1 Base Properties — Alphabetical List

1-192

ScansOutputByHardware
Indicate number of scans output by hardware

Description

In the session-based interface, the ScansOutputByHardware property displays
the number of scans output by the hardware after you start the operation using
startBackground.

Tip The value depends on information from the hardware.

Values

This read-only value is based on the output of the hardware configured for your session.

Example

Display Scans Output by Hardware

Generate data on an analog output channel and to see how many scans are output by the
hardware.

Create a session and add an analog output channel.

s = daq.createSession('ni');

ch = addAnalogOutputChannel(s,'Dev1','ao1','voltage');

Queue some output data and start the generation.

s.queueOutputData(linspace(-1, 1, 1000)');

startForeground(s);

Examine the ScansOutputByHardware property.

s.ScansOutputByHardware

 ScansOutputByHardware

1-193

ans =

 1000

See Also

Properties

ScansAcquired, ScansQueued

Functions

queueOutputData, startBackground

1 Base Properties — Alphabetical List

1-194

ScansQueued
Indicate number of scans queued for output

Description

In the session-based interface, the ScansQueued property displays the number of scans
queued for output queueOutputData. The ScansQueued property increases when you
successfully call queueOutputData. The ScansQueued property decreases when the
hardware reports that it has successfully output data.

Values

This read-only value is based on the number of scans queued.

Example

Display Scans Queued

Queue some output data to an analog output channel and examine the session properties
to see how many scans are queued.

Create a session and add an analog output channel.

s = daq.createSession('ni');

ch = addAnalogOutputChannel(s,'Dev1','ao1','voltage');

Queue some output data and call the ScansQueued property to see number of data
queued.

s.queueOutputData(linspace(-1, 1, 1000)');

s.ScansQueued

s.ScansQueued

ans =

 ScansQueued

1-195

 1000

See Also

Properties

ScansOutputByHardware

Functions

queueOutputData

1 Base Properties — Alphabetical List

1-196

Sending
Indicate whether data is being sent to hardware device

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Along with the Running property, Sending reflects the state of an analog output object.
Sending can be On or Off.

Sending is automatically set to On when a trigger occurs. When Sending is On, queued
data is being output to the analog output subsystem.

Sending is automatically set to Off when the queued data has been output, an error
occurs, or a stop function is issued. When Sending is Off, data is not being output
to the analog output subsystem although you can output a single sample with the
putsample function.

Characteristics

Usage AO, common to all channels
Access Read-only
Data type String
Read-only when running N/A

Values

{Off} Data is not being sent to the analog output hardware.
On Data is being sent to the analog output hardware.

 Sending

1-197

See Also

Functions

putsample

Properties

Running

1 Base Properties — Alphabetical List

1-198

Sensitivity

Sensitivity of an analog channel

Description

When working with the session-based interface, the Sensitivity property to set the
accelerometer or microphone sensor channel.

Sensitivity in an accelerometer channel is expressed as v

g
, or volts per gravity.

Sensitivity in a microphone channel is expressed as v

pa
, or volts per pascal.

Examples

Create a session object, add an analog input channel, with the 'accelerometer'
MeasurementType.
s = daq.createSession('ni');

s.addAnalogInputChannel('Dev4', 'ai0', 'accelerometer')

Data acquisition session using National Instruments hardware:

 Will run for 1 second (2000 scans) at 2000 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- -------------------------- ------------------ ----

 1 ai Dev4 ai0 Accelerometer (PseudoDiff) -5.0 to +5.0 Volts

Change the Sensitivity to 10.2e-3 V/G:
ch1 = s.Channels(1)

ch1.Sensitivity = 10.2e-3

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (2000 scans) at 2000 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- -------------------------- ---------------------- ----

 1 ai Dev4 ai0 Accelerometer (PseudoDiff) -490 to +490 Gravities

 Sensitivity

1-199

See Also

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-200

SensorRange
Specify range of data expected from sensor

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You use SensorRange to scale your data to reflect the range you expect from your
sensor. You can find the appropriate sensor range from your sensor's specification sheet.

The data is scaled while it is extracted from the engine with the getdata function
according to the formula

scaled value
(A/ D value)(units range)

(sensor range)
 =

The A/D value is constrained by the InputRange property, which reflects the gain
and polarity of your hardware channels. The units range is given by the UnitsRange
property.

Characteristics

Usage AI, per channel
Access Read/write
Data type Two-element vector of doubles
Read-only when running No

Values

The default value is determined by the default value of the InputRange property.

 SensorRange

1-201

See Also

Functions

getdata

Properties

InputRange, Units, UnitsRange

1 Base Properties — Alphabetical List

1-202

ShuntLocation
Indicate location of channel’s shunt resistor

Description

When working with the session-based interface, ShuntLocation on the analog input
current channel indicates if the shunt resistor is located internally on the device or
externally. Values are:

• 'Internal': when the shunt resistor is located internally.
• 'External': when the shunt resistor is located externally.

If your device supports an internal shunt resistor, this property is set to Internal by
default. If the shunt location is external, you must specify the shunt resistance value.

Example

Specify Shunt Location

Set the shunt location of an analog input current channel.

Create a session and add an analog input current channel.

s = daq.createSession('ni')

ch = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');

Set the ShuntLocation to Internal.

ch.ShuntLocation = 'Internal'

ch =

Data acquisition analog input current channel 'ai0' on device 'cDAQ1Mod7':

 ShuntLocation: Internal

ShuntResistance: 20

 Coupling: DC

 TerminalConfig: Differential

 ShuntLocation

1-203

 Range: -0.025 to +0.025 A

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Current'

 ADCTimingMode: HighResolution

See Also
ShuntResistance

1 Base Properties — Alphabetical List

1-204

ShuntResistance
Resistance value of channel’s shunt resistor

Description

When working with the session-based interface, the analog input current channel’s
ShuntResistance property indicates resistance in ohms. This value is automatically set
if the shunt resistor is located internally on the device and is read only.

Note: Before starting an analog output channel with an external shunt resistor, specify
the shunt resistance value.

Example

Specify Shunt Resistance

Set the shunt resistance of an analog input current channel.

Create a session and add an analog input current channel.

s = daq.createSession('ni')

ch = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');

Set the ShuntLocation to External and the ShuntResistance to 20.

ch.ShuntLocation = 'External';

ch.ShuntResistance = 20

ch =

Data acquisition analog input current channel 'ai0' on device 'cDAQ1Mod7':

 ShuntLocation: External

ShuntResistance: 20

 Coupling: DC

 TerminalConfig: Differential

 Range: -0.025 to +0.025 A

 ShuntResistance

1-205

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Current'

 ADCTimingMode: HighResolution

See Also
ShuntLocation

1 Base Properties — Alphabetical List

1-206

Source
Indicates trigger source terminal

Description

When working with the session-based interface, the Source property indicates the device
and terminal to which you added a trigger.

Example

View Clock Connection Source

Create an clock external clock connection and view the connection properties.

Create a session and add a digital input channel.

s = daq.createSession('ni');

ch = addDigitalChannel(s,'Dev1','Port0/Line2','InputOnly');

Add an external scan clock connection.

s.addClockConnection('External','Dev1/PFI0','ScanClock')

ans =

Scan Clock is provided externally and will be received by 'Dev1' at terminal 'PFI0'.

 Source: 'External'

 Destination: 'Dev1/PFI0'

 Type: ScanClock

See Also

DestinationaddTriggerConnection

 StandardSampleRates

1-207

StandardSampleRates
Display standard rates of sampling

Description

This property displays the standard sample rates supported by your audio device.
You can choose to use the standard rates or use values within the given range. See
UseStandardSampleRate for more information.

Standard sample rates for DirectSound audio devices are:

• 8000
• 8192
• 11025
• 16000
• 22050
• 32000
• 44100
• 47250
• 48000
• 50000
• 88200
• 96000
• 176400
• 192000
• 352800

Example

Set Rate of an Audio Session

Specify a non standard sample rate for a session with multichannel audio devices.

1 Base Properties — Alphabetical List

1-208

Create a session and add an audio channel.

s = daq.createSession('directsound')

ch = addAudioInputChannel(s,'Audio1',1);

Specify the session to use nonstandard sample rates.

s.UseStandardSampleRates = false

Data acquisition session using DirectSound hardware:

 Will run for 1 second (44100 scans) at 44100 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio1 1 Audio -1.0 to +1.0

Change the session rate to 85000.

s.Rate = 85000

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (85000 scans) at 85000 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio1 1 Audio -1.0 to +1.0

See Also
UseStandardSampleRate | BitsPerSample | addAudioInputChannel |
addAudioOutputChannel

 StartFcn

1-209

StartFcn
Specify callback function to execute before device object runs

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A start event is generated immediately after the start function is issued. This event
executes the callback function specified for StartFcn. When the callback function
has finished executing, Running is automatically set to On and the device object and
hardware device begin executing. Note that the device object is not started if an error
occurs while executing the callback function.

Start event information is stored in the Type and Data fields of the EventLog property.
The Type field value is Start. The Data field values are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
RelSample The acquired (AI) or output (AO) sample number when the

event occurred.

Characteristics
Usage AI, AO, common to all channels
Access Read/write
Data type String
Read-only when running No

Values
The default value is an empty string.

1 Base Properties — Alphabetical List

1-210

See Also

Functions

start

Properties

EventLog, Running

 StopFcn

1-211

StopFcn
Specify callback function to execute after device object runs

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A stop event is generated immediately after the device object and hardware device stop
executing. This occurs when

• A stop function is issued.
• For analog input (AI) objects, the requested number of samples to acquire was

reached or data was missed. For analog output (AO) objects, the requested number of
samples to output was reached.

• A run-time error occurred.

A stop event executes the callback function specified for StopFcn. Under most
circumstances, the callback function is not guaranteed to complete execution until
sometime after the device object and hardware device stop, and the Running property is
set to Off.

Stop event information is stored in the Type and Data fields of the EventLog property.
The Type field value is Stop. The Data field values are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
RelSample The acquired (AI) or output (AO) sample number when the event

occurred.

Characteristics

Usage AI, AO, common to all channels

1 Base Properties — Alphabetical List

1-212

Access Read/write
Data type String
Read-only when
running

No

Values

The default value is an empty string.

See Also

Functions

stop

Properties

EventLog, Running

 Tag

1-213

Tag
Specify device object label

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Tag provides a means to identify device objects with a label. Using the daqfind function
and the Tag value, you can identify and retrieve a device object that was cleared from the
MATLAB workspace.

Characteristics

Usage AI, AO, DIO, common to all channels and lines
Access Read/write
Data type String
Read-only when running No

Values

The default value is an empty string.

Examples

Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');

addchannel(ai,1:2);

Assign ai a label using Tag.

1 Base Properties — Alphabetical List

1-214

set(ai,'Tag','Sound')

If ai is cleared from the workspace, you can use daqfind and the Tag value to identify
and retrieve the device object.

clear ai

aicell = daqfind('Tag','Sound');

ai = aicell{1};

See Also

Functions

daqfind

 Terminal

1-215

Terminal
PFI terminal of counter subsystem

Description

When working with the session-based interface, the Terminal property indicates the
counter subsystem’s corresponding PFI terminal.

Example

Determine Counter Output Channel Terminal

Determine the correct terminal on your counter channel that you will connect your input
signal to, when synchronizing your session operation.

Create a session and add a counter output channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseWidth');

Examine the Terminal property of your channel.

ch.Terminal

ans =

PFI1

See Also

addCounterInputChannel, addCounterOutputChannel

1 Base Properties — Alphabetical List

1-216

TerminalConfig
Specify terminal configuration

Description

Use the TerminalConfig to change the configuration of your analog channel. The
property displays the hardware default configuration. You can change this to

• SingleEnded

• NonReferencedSingleEnded

• Differential

• PseudoDifferential

Example

Change Analog Channel Terminal Configuration

Change the terminal configuration of an analog input channel.

Create a session and add an analog input voltage channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'dev5',0,'voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5':

 Coupling: DC

 TerminalConfig: Differential

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

Change the TerminalConfig of the channel to SingleEnded.

 TerminalConfig

1-217

ch.TerminalConfig = 'SingleEnded'

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5':

 Coupling: DC

 TerminalConfig: SingleEnded

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

See Also
addAnalogInputChannel | addAnalogOutputChannel

1 Base Properties — Alphabetical List

1-218

Terminals
Terminals available on device or CompactDAQ chassis

Description

When working with the session-based interface, the Terminals on the device or the
CompactDAQ chassis lists all available terminals. The list includes terminals available
for trigger and clock connections. When you access the Terminals property on modules
on a CompactDAQ chassis, the terminals are on the chassis, not on the module.

Examples

Display Device Terminals

Discover available devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description

----- ------ --------- ------------------------------

1 ni cDAQ1Mod1 National Instruments NI 9205

2 ni cDAQ1Mod2 National Instruments NI 9263

3 ni cDAQ1Mod3 National Instruments NI 9234

4 ni cDAQ1Mod4 National Instruments NI 9201

5 ni cDAQ1Mod5 National Instruments NI 9402

6 ni cDAQ1Mod6 National Instruments NI 9213

7 ni cDAQ1Mod7 National Instruments NI 9219

8 ni cDAQ1Mod8 National Instruments NI 9265

Access the Terminals property of NI 9205 with index 1.

d(1).Terminals

ans =

 Terminals

1-219

 'cDAQ1/PFI0'

 'cDAQ1/PFI1'

 'cDAQ1/20MHzTimebase'

 'cDAQ1/80MHzTimebase'

 'cDAQ1/ChangeDetectionEvent'

 'cDAQ1/AnalogComparisonEvent'

 'cDAQ1/100kHzTimebase'

 'cDAQ1/SyncPulse0'

 'cDAQ1/SyncPulse1'

 .

 .

 .

See Also

Functions

daq.getDevices, addTriggerConnection,addClockConnection

1 Base Properties — Alphabetical List

1-220

ThermocoupleType
Select thermocouple type

Description

When working with the session-based interface, use the ThermocoupleType property to
select the type of thermocouple you will use to make your measurements. Select the type
based on the temperature range and sensitivity you need.

Values

You can set the ThermocoupleType to:

• 'J'

• 'K'

• 'N'

• 'R'

• 'S'

• 'T'

• 'B'

• 'E'

By default the thermocouple type is 'Unknown'.

Example

Specify Thermocouple Type

Create a session and add an analog input channel with 'Thermocouple' measurement
type.

s = daq.createSession('ni');

 ThermocoupleType

1-221

ch = addAnalogInputChannel(s,'cDAQ1Mod6','ai1','Thermocouple')

ch =

Data acquisition analog input thermocouple channel 'ai1' on device 'cDAQ1Mod6':

 Units: Celsius

ThermocoupleType: Unknown

 Range: 0 to +750 Celsius

 Name: ''

 ID: 'ai1'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Thermocouple'

 ADCTimingMode: HighResolution

Set the ThermocoupleType property to 'J'.

ch.Thermocoupletype = 'J'

ch =

Data acquisition analog input thermocouple channel 'ai1' on device 'cDAQ1Mod6':

 Units: Celsius

ThermocoupleType: J

 Range: 0 to +750 Celsius

 Name: ''

 ID: 'ai1'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Thermocouple'

 ADCTimingMode: HighResolution

See Also

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-222

Timeout
Specify additional waiting time to extract or queue data

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

The Timeout value (in seconds) is added to the time required to extract data from the
engine or queue data to the engine. Because data is extracted with the getdata function,
and queued with the putdata function, Timeout is associated only with these two
"blocking" functions.

If the requested data is not extracted or queued after waiting the required time, then
a time-out condition occurs and control is immediately returned to the MATLAB
workspace. A time-out is one of the conditions for stopping an acquisition. When a time-
out occurs, the callback function specified by RuntimeErrorFcn is called.

Timeout is not associated with hardware time-out conditions. Possible hardware time-
out conditions include

• Triggering on a voltage level and that level never occurs
• Externally clocking an acquisition and the external clock signal never occurs
• Losing the hardware connection

To check for hardware timeouts, you might need to poll the appropriate property value.

Characteristics

Usage AI, AO, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

 Timeout

1-223

Values

The default value is one second.

See Also

Functions

getdata, putdata

Properties

RuntimeErrorFcn

1 Base Properties — Alphabetical List

1-224

TimerFcn
Specify callback function to execute when predefined time period passes

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A timer event is generated whenever the time specified by the TimerPeriod property
passes. This event executes the callback function specified for TimerFcn. Time is
measured relative to when the device object starts running.

Some timer events might not be processed if your system is significantly slow or if the
TimerPeriod value is too small. The time taken to process an event depends on the
sample rate, the performance of your system, and the data itself.

There can only be one timer event waiting in the queue at a given time. The callback
function must process all available data to ensure that it keeps up with the inflow
of data. Alternatively, you can use the SamplesAcquiredFcn (analog input) or
SamplesOutputFcn (analog output) property to process the data when a specified
number of samples is acquired or output.

Note: For analog input objects, use the SamplesAvailable property inside a callback
function to determine the number of samples available in the queue.

For digital I/O objects, timer events are typically used to update and display the state of
the device object.

Timer event information is not stored in the EventLog property. When the callback
function is executed, the second argument is a structure containing two fields. The Type
field value is set to the string 'Timer', and the event Data field value is given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.

 TimerFcn

1-225

Characteristics

Usage AI, AO, DIO, common to all channels and lines
Access Read/write
Data type String
Read-only when running No

Values

The default value is an empty string.

See Also

Properties

EventLog, SamplesAcquiredFcn, SamplesOutputFcn, TimerPeriod

1 Base Properties — Alphabetical List

1-226

TimerPeriod

Specify time period between timer events

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

TimerPeriod specifies the time, in seconds, that must pass before the callback function
specified for TimerFcn is called. Time is measured relative to when the hardware device
starts running.

Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small. For example, a common application for timer events is
to display data. However, because displaying data is a CPU-intensive task, some of these
events might be dropped.

Characteristics

Usage AI, AO, DIO, common to all channels and lines
Access Read/write
Data type Double
Read-only when running No

Values

The default value is 0.1 second.

 TimerPeriod

1-227

See Also

Properties

TimerFcn

1 Base Properties — Alphabetical List

1-228

TriggerChannel
Specify channel serving as trigger source

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

TriggerChannel specifies the channel serving as the trigger source. The trigger
channel must be specified before the trigger type. You might need to configure the
TriggerCondition and TriggerConditionValue properties in conjunction with
TriggerChannel.

For all supported vendors, if TriggerType is Software, then you must acquire data
from the channel being used for the trigger source. For National Instruments hardware,
if TriggerType is HwAnalogChannel, then TriggerChannel must be the first
element of the channel group. The exception is if you are using simultaneous acquisition
devices such as the S-series boards, with which you can specify any channel for the
TriggerChannel value.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type Vector or scalar
Read-only when running Yes

Values

The data type can be either vector or scalar, representing one channel. The default value
is an empty vector.

 TriggerChannel

1-229

Examples

Create the analog input object ai, add two channels, and define the trigger source as
channel 2.

ai = analoginput('winsound');

ch = addchannel(ai,1:2);

ai.TriggerChannel = ch(2)

ai.TriggerType = 'Software'

See Also

Properties

TriggerCondition, TriggerConditionValue, TriggerType

1 Base Properties — Alphabetical List

1-230

TriggerCondition
Specify condition that must be satisfied before trigger executes

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

The available trigger conditions depend on the value of TriggerType. If TriggerType
is Immediate or Manual, the only available TriggerCondition is None. If
TriggerType is Software, then TriggerCondition can be Rising, Falling,
Leaving, or Entering. These trigger conditions require one or more voltage values to be
specified for the TriggerConditionValue property.

Based on the hardware you are using, additional trigger conditions might be available.
Refer to the values listed below.

Values

All Supported Hardware

The following trigger condition is used when TriggerType is Immediate or Manual.

{None} No trigger condition is required.

The following trigger conditions are available when TriggerType is Software.

{Rising} The trigger occurs when the signal has a positive slope when
passing through the specified value.

Falling The trigger occurs when the signal has a negative slope
when passing through the specified value.

Leaving The trigger occurs when the signal leaves the specified range
of values.

 TriggerCondition

1-231

Entering The trigger occurs when the signal enters the specified
range of values.

Measurement Computing

The following trigger conditions are available when TriggerType is HwDigital.

GateHigh The trigger occurs as long as the digital signal is high.
GateLow The trigger occurs as long as the digital signal is low.
TrigHigh The trigger occurs when the digital signal is high.
TrigLow The trigger occurs when the digital signal is low.
TrigPosEdge The trigger occurs when the positive (rising) edge of the

digital signal is detected.
{TrigNegEdge} The trigger occurs when the negative (falling) edge of the

digital signal is detected.

The following trigger conditions are available when TriggerType is HwAnalog.

{TrigAbove} The trigger occurs when the analog signal makes a transition
from below the specified value to above.

TrigBelow The trigger occurs when the analog signal makes a transition
from above the specified value to below.

GateNegHys The trigger occurs when the analog signal is more than the
specified high value. The acquisition stops if the analog
signal is less than the specified low value.

GatePosHys The trigger occurs when the analog signal is less than the
specified low value. The acquisition stops if the analog signal
is more than the specified high value.

GateAbove The trigger occurs as long as the analog signal is more than
the specified value.

GateBelow The trigger occurs as long as the analog signal is less than
the specified value.

GateInWindow The trigger occurs as long as the analog signal is within the
specified range of values.

1 Base Properties — Alphabetical List

1-232

GateOutWindow The trigger occurs as long as the analog signal is outside the
specified range of values.

National Instruments

The following trigger conditions are available for AI objects when TriggerType is
HwDigital.

PositiveEdge The trigger occurs when the positive (rising) edge of a digital
signal is detected.

{NegativeEdge} The trigger occurs when the negative (falling) edge of a
digital signal is detected.

The following trigger conditions are available for AO objects on NI-DAQmx devices when
TriggerType is HwDigital.

PositiveEdge The trigger occurs when the positive (rising) edge of a digital
signal is detected.

{NegativeEdge} The trigger occurs when the negative (falling) edge of a
digital signal is detected.

The following trigger conditions are available when TriggerType is HwAnalogChannel
or HwAnalogPin.

{AboveHighLevel} The trigger occurs when the analog signal is above the
specified value.

BelowLowLevel The trigger occurs when the analog signal is below the
specified value.

InsideRegion The trigger occurs when the analog signal is inside the
specified region.

LowHysteresis The trigger occurs when the analog signal is less than the
specified low value with hysteresis given by the specified high
value.

HighHysteresis The trigger occurs when the analog signal is greater than the
specified high value with hysteresis given by the specified low
value.

 TriggerCondition

1-233

See Also

Properties

TriggerChannel, TriggerConditionValue, TriggerType

1 Base Properties — Alphabetical List

1-234

TriggerCondition
Specify condition that must be satisfied before trigger executes

Description

When working with the session-based interface, use the TriggerCondition property to
specify the signal condition that executes the trigger, which synchronizes operations on
devices in a session. For more information, see “Synchronization”.

Values

Set the trigger condition to RisingEdge or FallingEdge.

Examples

Specify Session Connection Trigger Condition

Create a session and add channels and trigger to the session.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Change the trigger condition to FallingEdge.

connection = s.Connections(1)

connection.TriggerCondition = 'FallingEdge'

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 Trigger Connection added. (Details)

 TriggerCondition

1-235

 Number of channels: 2

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ---------------- ----

 1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts

 2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts

Click on (Details) to see the connection details.

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by 'Dev2' at terminal 'PFI0'.

 TriggerType: 'Digital'

TriggerCondition: FallingEdge

 Source: 'Dev1/PFI4'

 Destination: 'Dev2/PFI0'

 Type: StartTrigger

See Also

addTriggerConnection

Properties

TriggerType

1 Base Properties — Alphabetical List

1-236

TriggerConditionValue
Specify voltage value(s) that must be satisfied before trigger executes

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

For all hardware TriggerConditionValue is used when TriggerType is Software,
and is ignored when TriggerCondition is None. For vendor specific triggers, refer to
the TriggerCondition and the TriggerType properties.

To execute a software trigger, the values specified for TriggerCondition and
TriggerConditionValue must be satisfied. When TriggerCondition is Rising or
Falling, TriggerConditionValue accepts a single value. When TriggerCondition
is Entering or Leaving, TriggerConditionValue accepts a two-element vector of
values. For vendor specific values, refer to the TriggerCondition property.

Characteristics
Usage AI, common to all channels
Access Read/write
Data type Double (or a two-element vector of doubles)
Read-only when running Yes

Values
The default value is zero.

Examples
Create the analog input object ai and add one channel to it.

 TriggerConditionValue

1-237

ai = analoginput('winsound');

ch = addchannel(ai,1);

The trigger executes when a signal with a negative slope passing through 0.2 volts is
detected on channel 1.

ai.TriggerChannel = ch

ai.TriggerType = 'Software'

ai.TriggerCondition = 'Falling'

ai.TriggerConditionValue = 0.2

Create the analog input object ai for a National Instruments device and add four
channels to it.

ai = analoginput('nidaq', 'Dev1');

ch = addchannel(ai,0:3);

The trigger executes when a signal with a positive slope passing through 4.5 volts is
detected on PFI2.

ai.TriggerType = 'HwDigital'

ai.HwDigitalTriggerSource = 'PFI2'

ai.TriggerCondition = 'PositiveEdge'

ai.TriggerConditionValue = 4.5

See Also

Properties

TriggerCondition, TriggerType

1 Base Properties — Alphabetical List

1-238

TriggerDelay

Specify delay value for data logging

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You can define both pretriggers and postriggers. Pretriggers are specified with a negative
TriggerDelay value while postriggers are specified with a positive TriggerDelay
value. You can delay a trigger in units of time or samples with the TriggerDelayUnits
property. Pretriggers are not defined for hardware triggers or when TriggerType is
Immediate.

Pretrigger samples are included as part of the total samples acquired per trigger as
specified by the SamplesPerTrigger property. If sample-time pairs are returned to the
workspace with the getdata function, then the pretrigger samples are identified with
negative time values.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

Values

The default value is zero.

 TriggerDelay

1-239

Examples

Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');

ch = addchannel(ai,1);

Configure ai to acquire 44,100 samples per trigger with 11,025 samples (0.25 seconds)
acquired as pretrigger data.

ai.SampleRate = 44100

ai.TriggerType = 'Manual'

ai.SamplesPerTrigger = 44100

ai.TriggerDelay = -0.25

See Also

Properties

SamplesPerTrigger, TriggerDelayUnits

1 Base Properties — Alphabetical List

1-240

TriggerDelayUnits

Specify units in which trigger delay data is measured

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

TriggerDelayUnits can be Seconds or Samples. If TriggerDelayUnits is Seconds,
then data logging is delayed by the specified time for each channel group member. If
TriggerDelayUnits is Samples, then data logging is delayed by the specified number
of samples for each channel group member.

The trigger delay value is given by the TriggerDelay property.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type String
Read-only when running Yes

Values

{Seconds} The trigger is delayed by the specified number of seconds.
Samples The trigger is delayed by the specified number of samples.

 TriggerDelayUnits

1-241

See Also

Properties

TriggerDelay

1 Base Properties — Alphabetical List

1-242

TriggerFcn

Specify callback function to execute when trigger occurs

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

A trigger event is generated immediately after a trigger occurs. This event executes the
callback function specified for TriggerFcn. Under most circumstances, the callback
function is not guaranteed to complete execution until sometime after Logging is set to
On for analog input (AI) objects, or Sending is set to On for analog output (AO) objects.

Trigger event information is stored in the Type and Data fields of the EventLog
property. The Type field value is Trigger. The Data field values are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event occurred.
RelSample The acquired (AI) or output (AO) sample number when

the event occurred.
Channel The index number for each input channel serving as a

trigger source (AI only).
Trigger The trigger number.

Characteristics

Usage AI, AO, common to all channels
Access Read/write
Data type String
Read-only when running No

 TriggerFcn

1-243

Values

The default value is an empty string.

See Also

Functions

trigger

Properties

EventLog, Logging

1 Base Properties — Alphabetical List

1-244

TriggerRepeat

Specify number of additional times trigger executes

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You can configure a trigger to occur once (one-shot acquisition) or multiple times. If
TriggerRepeat is set to its default value of zero, then the trigger executes once. If
TriggerRepeat is set to a positive integer value, then the trigger executes once, and
is repeated the specified number of times. For example, if the value is set to 2, you
will get a total of 3 triggers. If TriggerRepeat is set to inf then the trigger executes
continuously until a stop function is issued or an error occurs.

You can quickly evaluate how many triggers have executed by examining the
TriggersExecuted property or by invoking the display summary for the device object.
The display summary is invoked by typing the device object name at the MATLAB
Command Window.

Note: We have observed that National Instruments USB devices have a significant cycle
time for the communications required to trigger the device. If you are using an NI USB
device, we recommend that you set up longer acquisitions that use fewer triggers. That
is, increase SamplesPerTrigger and decrease TriggerRepeat.

Characteristics

Usage AI, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

 TriggerRepeat

1-245

Values

The default value is zero.

See Also

Functions

disp, stop

Properties

SamplesPerTrigger, TriggersExecuted, TriggerType

1 Base Properties — Alphabetical List

1-246

TriggersExecuted
Indicate number of triggers that execute

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You can find out how many triggers executed by returning the value of
TriggersExecuted. The trigger number for each trigger executed is also recorded by
the Data.Trigger field of the EventLog property.

Characteristics

Usage AI, AO, common to all channels
Access Read-only
Data type Double
Read-only when running N/A

Values

The default value is zero.

Examples

Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');

ch = addchannel(ai,1);

Configure ai to acquire 40,000 samples with five triggers using the default sampling rate
of 8000 Hz.

 TriggersExecuted

1-247

ai.TriggerRepeat = 4

start(ai)

TriggersExecuted returns the number of triggers executed.

ai.TriggersExecuted

ans =

 5

See Also

Properties

EventLog

1 Base Properties — Alphabetical List

1-248

TriggersPerRun
Indicate the number of times the trigger executes in an operation

Description

When working with the session-based interface, the TriggersPerRun property indicates
the number of times the specified trigger executes for one acquisition or generation
session.

Examples

Specify Number of Triggers Per Operation

Create a session and add channels and trigger to the session.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Display Session’s TriggersPerRun Property.

s.TriggersPerRun

ans =

 1

Set the trigger to run twice during the operation.

s.TriggersPerRun = 2

s =

Data acquisition session using National Instruments hardware:

 Will run 2 times for 1 second (1000 scans) at 1000 scans/second.

 Trigger Connection added. (Details)

 TriggersPerRun

1-249

 Number of channels: 2

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ---------------- ----

 1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts

 2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts

See Also

addTriggerConnection

1 Base Properties — Alphabetical List

1-250

TriggersRemaining
Indicates the number of trigger to execute in an operation

Description

When working with the session-based interface, the TriggersRemaining property
indicates the number of trigger remaining for this acquisition or generation session. This
value depends on the number of triggers set using TriggersPerRun.

Examples

Display Number of Triggers Remaining in Operation

Create a session and add channels and trigger to the session.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Display Session’s TriggersRemaining Property.

s.TriggersRemaining

ans =

 1

See Also

addTriggerConnection

 TriggerType

1-251

TriggerType

Specify type of trigger to execute

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

TriggerType can be Immediate, Manual, or Software. If TriggerType is
Immediate, the trigger occurs immediately after the start function is issued. If
TriggerType is Manual, the trigger occurs immediately after the trigger function
is issued. If TriggerType is Software, the trigger occurs when the associated trigger
condition is satisfied (AI only).

For a given hardware device, additional trigger types might be available. Some trigger
types require trigger conditions and trigger condition values. Trigger conditions are
specified with the TriggerCondition property, while trigger condition values are
specified with the TriggerConditionValue property.

When a trigger occurs for an analog input object, data logging is initiated and the
Logging property is automatically set to On. When a trigger occurs for an analog output
object, data sending is initiated and the Sending property is automatically set to On.

Characteristics

Usage AI, AO, common to all channels
Access Read/write
Data type String
Read-only when running Yes

1 Base Properties — Alphabetical List

1-252

Values

All Supported Hardware

{Immediate} The trigger executes immediately after start is issued.
Pretrigger data cannot be captured.

Manual The trigger executes immediately after the trigger
function is issued.

Software The trigger executes when the associated trigger
condition is satisfied. Trigger conditions are given by the
TriggerCondition property. (AI only).

Measurement Computing

HwDigital The trigger source is an external digital signal (AI only).
Pretrigger data cannot be captured.

HwAnalog The trigger source is an external analog signal (AI only).

National Instruments

HwDigital The trigger source is an external digital signal. Pretrigger
data cannot be captured. Control the trigger source
with HwDigitalTriggerSource property. Specify the
external digital signal with the TriggerCondition and
TriggerConditionValue properties.

HwAnalogChannel The trigger source is an external analog signal (AI only). To
set the trigger source, see TriggerChannel property.

HwAnalogPin The trigger source is a low-range external analog signal
(AI only). Note that HwAnalogPin is supported only
for Traditional NIDAQ devices. It is not supported for
NIDAQmx devices.

For 1200 Series hardware, HwDigital is the only device-specific TriggerType value for
analog input subsystems. Analog output subsystems do not support any device-specific
TriggerType values.

 TriggerType

1-253

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release. See the supported hardware page at www.mathworks.com/
products/daq/supportedio.html for more information.

See Also

Functions

start, trigger

Properties

Logging, Sending, TriggerChannel, TriggerCondition, TriggerConditionValue

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

1 Base Properties — Alphabetical List

1-254

TriggerType
Type of trigger executed

Description

When working with the session-based interface, use this read only property displays the
type of trigger that the source device executes to synchronize operations in the session.
Currently all trigger types re digital.

See Also

Functions

addTriggerConnection

Properties

TriggerCondition

 Type

1-255

Type
Indicate device object type, channel, or line

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Type is associated with device objects, channels, and lines. For device objects, Type can
be Analog Input, Analog Output, or Digital I/O. Once a device object is created,
the value of Type is automatically defined.

For channels, the only value of Type is Channel. For lines, the only value of Type is
Line. The value is automatically defined when channels or lines are added to the device
object.

Characteristics

Usage AI, AO, common to all channels and per channel; DIO,
common to all lines and per line

Access Read-only
Data type String
Read-only when running N/A

Values

Device Objects

For device objects, Type has these possible values:

Analog Input The device object type is analog input.

1 Base Properties — Alphabetical List

1-256

Analog Output The device object type is analog output.
Digital IO The device object type is digital I/O.

The value is automatically defined after the device object is created.

Channels and Lines

For channels, the only value of Type is Channel. For lines, the only value of Type is
Line. The value is automatically defined when channels or lines are added to the device
object.

 Type

1-257

Type
Display synchronization trigger type

Description

When working with the session-based interface, this property displays the trigger type

Characteristics

Usage AI, AO, common to all channels and per channel; DIO,
common to all lines and per line

Access Read-only
Data type String
Read-only when running N/A

Values

Device Objects

For device objects, Type has these possible values:

Analog Input The device object type is analog input.
Analog Output The device object type is analog output.
Digital IO The device object type is digital I/O.

The value is automatically defined after the device object is created.

Channels and Lines

For channels, the only value of Type is Channel. For lines, the only value of Type is
Line. The value is automatically defined when channels or lines are added to the device
object.

1 Base Properties — Alphabetical List

1-258

Units
Specify unit of RTD measurement

Description

Use this property to specify the temperature unit of the analog input channel with RTD
measurement type in the session-based interface.

You can specify temperature values as:

• Celsius (Default)
• Fahrenheit

• Kelvin

• Rankine

Example

Change RTD Unit

Change the unit of an RTD channel.

Create a session, add an analog input RTD channel, and display channel properties.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'RTD')

ch =

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7':

 Units: Celsius

 RTDType: Unknown

 RTDConfiguration: Unknown

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 Units

1-259

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

Change the Units property from Celsius to Fahrenheit.

ch.Units = 'Fahrenheit'

ch =

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7':

 Units: Fahrenheit

 RTDType: Unknown

 RTDConfiguration: Unknown

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -328 to +1220 Fahrenheit

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

Class

addAnalogInputChannel

1 Base Properties — Alphabetical List

1-260

Units
Specify engineering units label

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Units is a string that specifies the engineering units label to associate with your data.
You should use Units in conjunction with the UnitsRange property.

Characteristics

Usage AI, AO, per channel
Access Read/write
Data type String
Read-only when running No

Values

The default value is Volts.

See Also

Properties

UnitsRange

 UnitsRange

1-261

UnitsRange
Specify range of data as engineering units

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

You use UnitsRange to scale your data to reflect particular engineering units.

For analog input objects, the data is scaled while it is extracted from the engine with the
getdata function according to the formula

scaled value = (A/D value)(units range)/(sensor range)

The A/D value is constrained by the InputRange property, which reflects the gain and
polarity of your analog input channels. The sensor range is given by the SensorRange
property, which reflects the range of data you expect from your sensor.

For analog output objects, the data is scaled when it is queued in the engine with the
putdata function according to the formula

scaled value = (original value)(output range)/(units range)

The output range is constrained by the OutputRange property, which specifies the gain
and polarity of your analog output channels.

For both objects, you can also use the Units property to associate a meaningful label
with your data.

Characteristics

Usage AI, AO, per channel
Access Read/write

1 Base Properties — Alphabetical List

1-262

Data type Two-element vector of doubles
Read-only when running No

Values

The default value is determined by the default value of the InputRange or the
OutputRange property.

See Also

Functions

getdata, putdata

Properties

InputRange, OutputRange, SensorRange, Units

 UserData

1-263

UserData
Store data to associate with device object

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

UserData stores data that you want to associate with the device object.

Note that if you return analog input object information to the MATLAB workspace using
the daqread function, the UserData value is not restored.

Characteristics

Usage AI, AO, DIO, common to all channels and lines
Access Read/write
Data type Any type
Read-only when running No

Values

The default value is an empty vector.

Examples

Create the analog input object ai and add two channels to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:1);

1 Base Properties — Alphabetical List

1-264

Suppose you want to access filter coefficients during the acquisition. You can create a
structure to store these coefficients, which can then be stored in UserData.

coeff.a = 1.0;

coeff.b = -1.25;

ai.UserData = coeff

 UseStandardSampleRate

1-265

UseStandardSampleRate
Configure session to use standard sample rates

Description

Use this property to specify if your audio channel uses standard sample rates supported
by your device or a user-specified value. To use non-standard sample rates, set the value
to false and set the sessions’s Rate to the desired value.

Example

Change Acquisition Rate

Add an audio channel to a session and change the UseStandardSampleRates property.

s = daq.createSession('directsound');

addAudioInputChannel(s,Audio1,1);

s.UseStandardSampleRates = false

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (44100 scans) at 44100 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio1 1 Audio -1.0 to +1.0

Specify a different scan rate.

s.Rate = 8500

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (8500 scans) at 8500 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

1 Base Properties — Alphabetical List

1-266

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio3 1 Audio -1.0 to +1.0

See Also
StandardSampleRates | Rate | addAudioInputChannel |
addAudioOutputChannel

 Vendor

1-267

Vendor

Vendor information associated with session object

Description

In the session-based interface, the Vendor property displays information about the
vendor.

Values

a daq.Vendor object that represents the vendor associated with the session.

Examples

Use the daq.getVendors to get information about vendors.

s = daq.createSession('ni');

v = s.Vendor

v =

Data acquisition vendor 'National Instruments':

 ID: 'ni'

 FullName: 'National Instruments'

AdaptorVersion: '3.3 (R2013a)'

 DriverVersion: '9.2.3 NI-DAQmx'

 IsOperational: true

Properties, Methods, Events

Additional data acquisition vendors may be available as downloadable support packages.

Open the Support Package Installer to install additional vendors.

1 Base Properties — Alphabetical List

1-268

See Also

daq.createSession

 WaveformType

1-269

WaveformType
Function generator channel waveform type

Description

This read-only property displays the channel waveform type that you specified while
creating a function generator channel in a session. Supported waveform types are:

• 'Sine’

• 'Square’

• 'Triangle’

• 'RampUp’

• 'RampDown’

• 'DC’

• 'Arbitrary’

Example

Display the channel’s waveform type.

fgenCh.WaveformType

ans =

 Sine

1 Base Properties — Alphabetical List

1-270

ZResetCondition
Reset condition for Z-indexing

Description

When working with the session-based interface, use the ZResetCondition property to
specify reset conditions for Z-indexing of counter Input 'Position' channels. Accepted
values are:

• 'BothHigh'

• 'BothLow'

• 'AHigh'

• 'BHigh'

Example

Change Counter Channel Z Reset Condition

Create a session and add a counter input Position channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

 ZResetCondition

1-271

MeasurementType: 'Position'

Change the ZResetCondition to BothLow.

ch.ZResetCondition = 'BothLow'

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothLow

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

See Also

addCounterInputChannel

1 Base Properties — Alphabetical List

1-272

ZResetEnable
Enable reset for Z-indexing

Description

When working with the session-based interface, use the ZResetEnable property to
specify if you will allow the Z-indexing to be reset on a counter input 'Position'
channel.

Example

Reset Z Indexing on Counter Channel

Create a session and add a counter input Position channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

Change the ZResetEnable to 1.

ch.ZResetEnable = 'BothLow'

ch =

 ZResetEnable

1-273

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 1

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

See Also

Class

addCounterInputChannel

1 Base Properties — Alphabetical List

1-274

ZResetValue
Reset value for Z-indexing

Description

When working with the session-based interface, use the ZResetValue property to
specify the reset value for Z-indexing on a counter input 'Position' channel.

Example

Specify Z Indexing Value

Create a session and add a counter input Position channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

Change the ZResetValue to 62.

ch.ZResetValue = 62

ch =

 ZResetValue

1-275

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 1

 ZResetValue: 62

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

See Also

Class

addCounterInputChannel

1-276

2

Device-Specific Properties —
Alphabetical List

2 Device-Specific Properties — Alphabetical List

2-2

BiDirectionalBit

Specify BIOS control register bit that determines bidirectional operation

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

BiDirectionalBit can be 5, 6, or 7. The default value is 5 because most parallel port
hardware uses bit 5 of the BIOS control register to determine the direction (input or
output) of port 0.

If port 0 is unable to input data, you need to configure the BiDirectionalBit value
to 6 or 7. Typically, you will not know the bit value required by your port, and some
experimentation is required.

Note: The Parallel Port adaptor will be deprecated in a future version of the toolbox. If
you create a Data Acquisition Toolbox™ object for 'parallel' beginning in R2008b, you
will receive a warning stating that this adaptor will be removed in a future release. See
the supported hardware page at www.mathworks.com/products/daq/supportedio.html for
more information.

Characteristics

Vendor Parallel port
Usage DIO, common to all lines
Access Read/write
Data type Double
Read-only when running Yes

http://www.mathworks.com/products/daq/supportedio.html

 BiDirectionalBit

2-3

Values

{5}, 6, or 7 The BIOS control register bit that determines
bidirectional operation.

2 Device-Specific Properties — Alphabetical List

2-4

BitsPerSample
Specify number of bits sound card uses to represent samples

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

BitsPerSample can be 8, 16, or any value between 17 and 32. The specified number
of bits determines the number of unique values a sample can take on. For example, if
BitsPerSample is 8, the sound card represents each sample with 8 bits. This means
that each sample is represented by a number from 0 through 255. If BitsPerSample is
16, the sound card represents each sample with 16 bits. This means that each sample is
represented by a number from 0 through 65,535.

For older Sound Blaster cards configured for full duplex operation, you might not be
able to set BitsPerSample to 16 bits for both the analog input and analog output
subsystems. Instead, you need to set one subsystem for 8 bits, and the other subsystem
for 16 bits.

Note To use the high-resolution (greater than 16 bit) capabilities for some sound cards,
you might need to configure BitsPerSample to either 24 or 32 even if your device does
not use that number of bits.

Characteristics

Vendor Sound cards
Usage AI, AO, common to all channels
Access Read/write
Data type Double
Read-only when running Yes

 BitsPerSample

2-5

Values

8, {16}, or 17-32 Represent data with the specified number of bits.

2 Device-Specific Properties — Alphabetical List

2-6

Coupling
Specify input coupling mode

Description

The Coupling property is visible only if the device you are using supports coupling
and the value can be changed. Coupling can be DC or AC. If Coupling is DC, the input
is connected directly to the amplifier. If Coupling is AC, a series capacitor is inserted
between the input connector and the amplifier.

When AC coupling is selected, the DC bias component of the measured signal is filtered
out of the waveform by the hardware. This is typically used with dynamic signals such
as audio. When DC coupling is selected, the complete signal including the DC bias
component is measured. This is typically used with slowly changing signals such as
temperature or voltage readings.

Values

{AC} A series capacitor is inserted between the input connector
and the amplifier.

DC The input is connected directly to the amplifier.

The default is set to AC for

• National Instruments devices that use the NI-DAQmx interface and support AC
coupling

• National Instruments DSA cards using the Traditional NI-DAQ interface

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of
the toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-
DAQ adaptor beginning in R2008b, you will receive a warning stating that this
adaptor will be removed in a future release. See the supported hardware page at
www.mathworks.com/products/daq/supportedio.html for more information.

In all other cards, the default is set to DC.

http://www.mathworks.com/products/daq/supportedio.html

 Coupling

2-7

Examples

In the session-based interface, create a session and add an analog input channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'Dev4', 'ai1', 'Voltage')

Change the coupling type to DC:

ch.Coupling = 'DC';

In the legacy interface, create the analog input object ai for a National Instruments
board, and add a hardware channel to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0);

You can return the coupling modes supported by the board with the Coupling field of
the daqhwinfo function.

out = daqhwinfo(ai);

out.Coupling

ans =

 'AC,DC'

Configure the channel contained by ai to use dc-coupling:

ai.Channel.Coupling = 'DC';

ai.Channel.Coupling

ans=

DC

2 Device-Specific Properties — Alphabetical List

2-8

ExternalClockDriveLine

Specify which signal is driven by the clock indicating that an analog output update has
occurred

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ExternalClockDriveLine defines which pin is pulsed when analog output channels
are updated. You can use this property to synchronize the operations of multiple cards
over the RTSI bus or via external PFI pins.

Note: The National Instruments term for this clock is AO Sample Clock.

Characteristics

Vendor National Instruments
Usage AO
Access Read/write
Data type String
Read-only when running Yes

Values

PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

 ExternalClockDriveLine

2-9

See Also

Properties

ExternalClockSource

2 Device-Specific Properties — Alphabetical List

2-10

ExternalClockSource

Specify which signal generates an analog output update across channels

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ExternalClockSource specifies the pin whose signal is used as the clock to update
analog outputs across a group of channels. This property is in effect when the
ClockSource property is set to External.

Note: The National Instruments term for this clock is AO Sample Clock.

Characteristics

Vendor National Instruments
Usage AO
Access Read/write
Data type String
Read-only when running Yes

Values

PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

 ExternalClockSource

2-11

See Also

Properties

ClockSource

2 Device-Specific Properties — Alphabetical List

2-12

ExternalSampleClockDriveLine

Specify which signal line is driven by the clock for sample conversions on each channel

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ExternalSampleClockDriveLine defines which pin is pulsed when conversions occur
on each channel. Data acquisition cards with simultaneous sample and hold ignore this
property. You can use this property to synchronize the operations of multiple cards over
the RTSI bus or via external PFI pins.

Note: The National Instruments term for this clock is AI Convert Clock.

Characteristics

Vendor National Instruments
Usage AI
Access Read/write
Data type String
Read-only when running Yes

Values

PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

 ExternalSampleClockDriveLine

2-13

See Also

Properties

ExternalSampleClockSource

2 Device-Specific Properties — Alphabetical List

2-14

ExternalSampleClockSource

Specify which signal provides clock for sample conversions across channels

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ExternalSampleClockSource specifies the pin whose signal is used as the channel
clock for conversions on each channel. This property is in effect when the ClockSource
property is set to ExternalSampleCtrl or ExternalSampleAndScanCtrl.

Data acquisition cards with simultaneous sample and hold ignore this property.

Note: The National Instruments term for this clock is AI Convert Clock.

Characteristics

Vendor National Instruments
Usage AI
Access Read/write
Data type String
Read-only when running Yes

Values

PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

 ExternalSampleClockSource

2-15

See Also

Properties

ClockSource, ExternalScanClockSource

2 Device-Specific Properties — Alphabetical List

2-16

ExternalScanClockDriveLine

Specify which signal is driven by the clock indicating the start of a series of conversions
across channels

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ExternalScanClockDriveLine defines which pin is pulsed when a series of
conversions across channels start. You can use this property to synchronize the
operations of multiple cards over the RTSI bus or via external PFI pins.

Note: The National Instruments term for this clock is AI Sample Clock.

Characteristics

Vendor National Instruments
Usage AI
Access Read/write
Data type String
Read-only when running Yes

Values

PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

 ExternalScanClockDriveLine

2-17

See Also

Properties

ExternalScanClockSource

2 Device-Specific Properties — Alphabetical List

2-18

ExternalScanClockSource

Specify which signal starts series of conversions across channels

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ExternalScanClockSource specifies the pin whose signal is used as the
scan clock to initiate conversions across a group of channels. This property
is in effect when the ClockSource property is set to ExternalScanCtrl or
ExternalSampleAndScanCtrl.

Note: The National Instruments term for this clock is AI Sample Clock.

Characteristics

Vendor National Instruments
Usage AI
Access Read/write
Data type String
Read-only when running Yes

Values

PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

 ExternalScanClockSource

2-19

See Also

Properties

ClockSource, ExternalSampleClockSource

2 Device-Specific Properties — Alphabetical List

2-20

ExternalTriggerDriveLine
Specify which signal line is driven with a pulse when data acquisition or generation
starts

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

ExternalTriggerDriveLine defines which pin is pulsed when a data acquisition or
generation starts. You can use this property to synchronize the operations of multiple
cards over the RTSI bus or via external PFI pins.

Characteristics
Vendor National Instruments
Usage AI
Access Read/Write
Data type String
Read-only when running Yes

Values
PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

See Also

Properties

HwDigitalTriggerSource

 HwDigitalTriggerSource

2-21

HwDigitalTriggerSource
Specify which signal initiates data acquisition

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

HwDigitalTriggerSource defines which pin is used to initiate a data acquisition when
the TriggerType property is set to HwDigital.

Characteristics

Vendor National Instruments
Usage AI, AO
Access Read/write
Data type String
Read-only when running Yes

Values

PFI0 to PFI15 Use specified pin from PFI0 through PFI15.
RTSI0 to RTSI6 Use specified pin from RTSI0 through RTSI6.

See Also

Properties

TriggerType

2 Device-Specific Properties — Alphabetical List

2-22

NumMuxBoards
Specify number of external multiplexer devices connected

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

NumMuxBoards specifies the number of AMUX-64T multiplexer devices connected to your
hardware. NumMuxBoards can be 0, 1, 2, or 4. If you are using a 1200 Series board, then
NumMuxBoards can only be 0.

Characteristics

Vendor National Instruments Traditional NI-DAQ devices
Usage AI, common to all channels
Access Read/write
Data type Double
Read-only when running No

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release. See the supported hardware page at www.mathworks.com/
products/daq/supportedio.html for more information.

Values

{0}, 1, 2, or 4 The number of AMUX-64T multiplexer devices connected.

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

 OutOfDataMode

2-23

OutOfDataMode

Specify how value held by analog output subsystem is determined

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

When queued data is output to the analog output (AO) subsystem, the hardware typically
holds a value. For National Instruments and Measurement Computing devices, the value
held is determined by OutOfDataMode.

OutOfDataMode can be Hold or DefaultValue. If OutOfDataMode is Hold, then the
last value output is held by the AO subsystem. If OutOfDataMode is DefaultValue,
then the value specified by the DefaultChannelValue property is held by the AO
subsystem.

Characteristics

Vendor Measurement Computing, National Instruments
Usage AO, common to all channels
Access Read/write
Data type String
Read-only when running Yes

Values

{Hold} Hold the last output value.
DefaultValue Hold the value specified by DefaultChannelValue.

2 Device-Specific Properties — Alphabetical List

2-24

Examples

Create the analog output object ao and add two channels to it.

ao = analogoutput('nidaq','Dev1');

addchannel(ao,0:1);

You can configure ao so that when queued data is finished being output, a value of 1 volt
is held for both channels.

ao.OutOfDataMode = 'DefaultValue';

ao.Channel.DefaultChannelValue = 1.0;

See Also

Properties

DefaultChannelValue

 PortAddress

2-25

PortAddress

Indicate base address of parallel port

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

The PC supports up to three parallel ports that are assigned the labels LPT1, LPT2,
and LPT3. You can use any of these standard ports as long as they use the usual base
addresses, which are (in hex) 378, 278, and 3BC, respectively.

Additional ports, or standard ports not assigned the usual base addresses, are not
accessible by the toolbox. Note that most PCs that support MATLAB will include a single
parallel printer port with base address 378 (LPT1).

Note: The Parallel Port adaptor will be deprecated in a future version of the toolbox. If
you create a Data Acquisition Toolbox™ object for 'parallel' beginning in R2008b, you
will receive a warning stating that this adaptor will be removed in a future release. See
the supported hardware page at www.mathworks.com/products/daq/supportedio.html for
more information.

Characteristics

Vendor Parallel port
Usage DIO, common to all lines
Access Read only
Data type String
Read-only when running Yes

http://www.mathworks.com/products/daq/supportedio.html

2 Device-Specific Properties — Alphabetical List

2-26

Values

The value is automatically defined when the object is created.

Examples

Create a digital I/O object for parallel port LPT1 and return the PortAddress value.

dio = digitalio('parallel','LPT1');

dio.PortAddress

ans =

0x378

The returned value indicates that LPT1 uses the usual base address.

 StandardSampleRates

2-27

StandardSampleRates
Specify whether valid sample rates snap to small set of standard values, or if you can set
sample rate to any allowed value

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

StandardSampleRates can be On of Off. If StandardSampleRates is Off, then
it is possible to set the sample rate to any value within the bounds supported by the
hardware. For most sound cards, the lower bound is 8.000 kHz, while the upper bound is
44.1 kHz. For newer sound cards, an upper bound of 96.0 kHz might be supported. The
specified sample rate is rounded up to the next integer value.

If StandardSampleRates is On, then the available sample rates snap to a small set of
standard values. The standard values are 8.000 kHz, 11.025 kHz, 22.050 kHz, and 44.100
kHz. If you specify a sampling rate that is within one percent of a standard value, then
the sampling rate snaps to that standard value. If you specify a sampling rate that is not
within one percent of a standard value, then the sampling rate rounds up to the closest
standard value.

Regardless of the StandardSampleRates value, if you specify a sampling rate that is
outside the allowed limits, then an error is returned.

Characteristics

Vendor Sound cards
Usage AI, AO, common to all channels
Access Read/write
Data type String
Read-only when running Yes

2 Device-Specific Properties — Alphabetical List

2-28

Values

On The sample rate can be set only to a small set of standard values.
{Off} If supported by the hardware, the sample rate can be set to any

value within the allowed bounds, up to a maximum of 96.0 kHz.

 TransferMode

2-29

TransferMode
Specify how data is transferred from data acquisition device to system memory

Description

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

For National Instruments NI-DAQmx hardware, this property is ignored. The device
driver automatically selects the most efficient transfer mode available.

For National Instruments Traditional NI-DAQ hardware, TransferMode can be
Interrupts or SingleDMA for both analog input and analog output subsystems. If
TransferMode is Interrupts, then data is transferred from the hardware first-in,
first-out memory buffer (FIFO) to system memory using interrupts. If TransferMode is
SingleDMA, then data is transferred from the hardware FIFO to system memory using a
single direct memory access (DMA) channel. Some boards also support a TransferMode
of DualDMA for analog input subsystems. For example, the AT-MIO-16E-1 board supports
this transfer mode. If TransferMode is DualDMA, then data is transferred from the
hardware FIFO to system memory using two DMA channels. Depending on your system
resources, data transfer via interrupts can significantly degrade system performance.

For Measurement Computing hardware, TransferMode can be Default,
InterruptPerPoint, DMA, InterruptPerBlock, or InterruptPerScan.
If TransferMode is Default, the transfer mode is automatically selected by
the driver based on the board type and the sampling rate. If TransferMode is
InterruptPerPoint, a single conversion is transferred for each interrupt. You
should use this property value if your sampling rate is less the 5 kHz or you specify
a small block size for memory buffering (as defined by the BufferingConfig
property). If TransferMode is DMA, data is transferred using a single DMA channel. If
TransferMode is InterruptPerBlock, a block of data is transferred for each interrupt.
You should use this property value if your sampling rate is greater than 5 kHz and you
are using a board that has a fast maximum sampling rate. Note that a data block is
defined by the board, and usually corresponds to half the FIFO size. If TransferMode is
InterruptPerScan, data is not transferred until the entire scan is complete. This can
only be used when the number of points acquired is less than or equal to the FIFO size.

2 Device-Specific Properties — Alphabetical List

2-30

You should use this mode if your sampling rate is higher than the maximum continuous
scan rate of the data acquisition device.

Note If your sampling rate is greater than ~5 kHz, you should avoid using interrupts if
possible. The recommended TransferMode setting for your application will be described
in your hardware documentation, and depends on the specific board you are using and
your platform configuration.

Characteristics

Vendor Measurement Computing, National Instruments
Usage AI, AO, common to all channels
Access Read/write
Data type String
Read-only when running Yes

Values

Advantech

{InterruptPerPoint} Transfer single data points using interrupts.
InterruptPerBlock Transfer a block of data using interrupts (AI only).

Measurement Computing

{Default} The transfer mode is automatically selected by the driver
based on the board type and the sampling rate.

InterruptPerPoint Transfer single data points using interrupts.
DMA Transfer data using a single DMA channel (AI only).
InterruptPerBlock Transfer a block of data using interrupts (AI only).
InterruptPerScan Transfer all data when the acquisition is complete (AI

only).

 TransferMode

2-31

National Instruments

Interrupts Transfer data using interrupts.
SingleDMA Transfer data using a single DMA channel.
DualDMA Transfer data using two DMA channels.

This default property value is supplied by the driver. For most devices that support data
transfer via interrupts and DMA, SingleDMA is the default value.

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release. See the supported hardware page at www.mathworks.com/
products/daq/supportedio.html for more information.

Examples

Set the TransferMode property for a National Instruments board before acquiring data.

ai = analoginput('nidaq', 1);

ai.TransferMode = 'SingleDMA');

addchannel(ai, 1:2);

softscope(ai)

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

2-32

3

Block Reference

Analog Input
Analog Input (Single Sample)
Analog Output
Analog Output (Single Sample)
Digital Input
Digital Output

3 Block Reference

3-2

Analog Input

Acquire data from multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: You cannot use certain devices with Data Acquisition Toolbox Simulink® blocks.
Refer to the Supported Hardware page to see if your device supports Simulink use.

Description

The Analog Input block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once
at the start of the model's execution. During the model's run time, the block acquires
data either synchronously (deliver the current block of data the device is providing) or
asynchronously (buffer incoming data).

Note: You need a license for both Data Acquisition Toolbox and Simulink software to use
this block.

The block has no input ports. It has one or more output ports, depending on the
configuration you choose in the Source Block Parameters dialog box. The following
diagram shows the block configured with one port for both channels and with one port for
each channel, in the case of a device that has two channels.

http://www.mathworks.com/products/daq/supportedio.html

Analog Input

3-3

Use the Analog Input block to incorporate live measured data into Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation
• design control

Note: You can use the Analog Input block only with devices that support clocked
acquisition. The block will error out when the model is run with a device that does not
support clocking. To acquire data using devices that do not support clocking, use the
Analog Input (Single Sample) block.

You can use this block for signal applications by using it with basic Simulink and DSP
System Toolbox™.

You can use the Analog Input block either synchronously or asynchronously. Select the
acquisition mode in the Source Block Parameters dialog box.

The following diagram shows the basic analog input usage scenario, in which you would:

• Acquire data at each time step or once per model execution.
• Analyze the data, or use it as input to a system in the model.
• Optionally display results.

3 Block Reference

3-4

For an example of creating a model using the Analog Input block, see “Example: Bringing
Analog Data into a Model”.

Other Supported Features

The Analog Input block supports the use of Simulink Accelerator™ mode. This feature
speeds up the execution of Simulink models.

Note: You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include
other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Source Block Parameters dialog box to select your acquisition mode and to set
other configuration options.

Analog Input

3-5

3 Block Reference

3-6

Acquisition Mode

Asynchronous
Initiates the acquisition when the simulation starts. The simulation runs while data
is acquired into a FIFO (First in, First out) buffer. The acquisition is continuous; the
block buffers data while outputting a scan/frame of data at each time step.

Synchronous
Initiates the acquisition at each time step. The simulation will not continue until
the requested block of data is acquired. This is unbuffered input; the block will
synchronously output the latest scan/frame of data at each time step.

The following diagrams show the difference between synchronous and asynchronous
modes for the Analog Input block.

Synchronous Analog Input

At the first time step (T1), the acquisition is initiated for the required block of data (B1).
The simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 1

Analog Input

3-7

Scenario 1 shows the case when simulation speed outpaces data acquisition speed. At the
first time step (T1), the required block of data (B1) is still being acquired. Therefore, the
simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 2

Scenario 2 shows the case when data acquisition speed outpaces simulation speed. At
the first time step (T1), the required block of data (B1) has been completely acquired.
Therefore, the simulation runs continuously.

3 Block Reference

3-8

Note: Several factors, including device hardware and model complexity, can affect the
simulation speed, causing both scenarios 1 and 2 to occur within the same simulation.

Options

Device
The data acquisition device from which you want to acquire data. The items in the
list vary, depending on which devices you have connected to your system. Devices in
the list are specified by adaptor/vendor name and unique device ID, followed by the
name of the device. The first available device is selected by default.

Hardware sample rate
The rate at which samples are acquired from the device, in samples per second.
This is the sampling time for the hardware. The default is defined when a device is
selected.

The sample rate must be a positive real number, and be within the range allowed for
the selected hardware.

Block size
The desired number of data samples to output at each time step for each channel.
Block size corresponds to the SamplesPerTrigger property for an analog input
device. The default value for block size depends on the hardware selected. It must be
a positive integer, and be within the range allowed for the selected hardware.

Input type
Specifies the hardware channel configuration, such as single-ended, differential, etc.
The input type is defined by the capabilities of the selected device.

Channels
The channel configuration table lists your device's hardware channels and lets you
configure them. Use the check boxes and selection buttons to specify which channels
to acquire data from. These parameters are specified for each selected channel:

Hardware Channel — Displays the hardware channel ID specified by the device.
The Hardware Channel column is read only and the parameters are defined when
the device is selected.

The Name — Specifies the channel name. By default the table displays any names
provided by the hardware, but you can edit the names. For example, if the device is a
sound card with two channels, you can name them Left and Right.

Analog Input

3-9

Input Range — Specifies the input ranges available for each channel supported by
the hardware, and is defined when a device is selected.

Outputs

Number of ports
Select 1 for all hardware channels (default) or 1 per hardware channel.

Using 1 for all hardware channels outputs data from a single port as a matrix,
with a size of Block size x Number of Channels selected.

Using 1 per hardware channel outputs data from N ports, where N is equal to the
number of selected channels. Each output port will be a column vector with a size of
Block size x 1. For naming, each output port will use the channel name if one was
specified, or otherwise use [HWChannel + channel ID], for example, HWChannel2.

Signal type
Select Sample-based or Frame-based. This option determines whether the signal
type is sample-based or frame-based. Sample-based is the default.

Note: The Frame-based option works only if you have the DSP System Toolbox
software installed.

Data type
Select your data type to output from the block. The Analog Input block supports
double and native data types, as supported by the hardware. double is the default.
Native data types will be dynamically populated in this list based on the hardware
that is selected. For example, if int16 is a native data type of a specific hardware
device, then one of the entries for Data type will be int16 (native).

See Also

Analog Input (Single Sample), Analog Output, Analog Output (Single Sample), Digital
Input, Digital Output

3 Block Reference

3-10

Analog Input (Single Sample)

Acquire single sample from multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: You cannot use certain devices with Data Acquisition Toolbox Simulink blocks.
Refer to the Supported Hardware page to see if your device supports Simulink use.

Description

The Analog Input (Single Sample) block opens, initializes, configures, and controls an
analog data acquisition device. The opening, initialization, and configuration of the
device occur once at the start of the model's execution. The block acquires a single sample
every sample time, synchronously from the device, during the model's run time.

Note: You need a license for both Data Acquisition Toolbox and Simulink software to use
this block.

The block has no input ports. It has one or more output ports, depending on the
configuration you choose in the Source Block Parameters dialog box. The following
diagram shows the block configured with one port for both channels and with one port for
each channel, in the case of a device that has two channels.

http://www.mathworks.com/products/daq/supportedio.html

Analog Input (Single Sample)

3-11

Use the Analog Input (Single Sample) block to incorporate live measured data into
Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation
• Controls design

Note: You can use Analog Input (Single Sample) block only with devices that support
single sample acquisition. The block will error out when the model is run with a device
that does not support single sample acquisition. To acquire data from devices that do not
support acquisition of a single sample (like devices designed for sound and vibration), use
the Analog Input block.

You can use the Analog Input (Single Sample) block for signal applications by using it
with basic Simulink and DSP System Toolbox.

Other Supported Features

The Analog Input (Single Sample) block supports the use of Simulink Accelerator mode.
This feature speeds up the execution of Simulink models.

Note: You need the C++ Compiler to use Simulink Accelerator mode.

This block supports the use of model referencing. This feature lets your model include
other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Source Block Parameters dialog box to select your device and to set other
configuration options.

3 Block Reference

3-12

Device
The data acquisition device from which you want to acquire data. The items in the
list vary, depending on which devices you have connected to your system. Devices in
the list are specified by adaptor/vendor name and unique device ID, followed by the
name of the device. The first available device is selected by default.

Input type
Specifies the hardware channel configuration, such as single-ended, differential, etc.
When you select a device, the device capability defines the available values for input
type.

Channels

Analog Input (Single Sample)

3-13

The channel configuration table lists your device's hardware channels and lets you
configure them. Use the check boxes and selection buttons to specify which channels
to acquire data from. These parameters are specified for each selected channel:

Hardware Channel — Displays the hardware channel ID specified by the device.
The Hardware Channel column is read-only and the parameters are defined when
the device is selected.

Name — Specifies the channel name. By default the table will display any names
provided by the hardware, but you can edit the names. For example, if you are using
a device to acquire indoor and outdoor temperature from two channels, you can name
them IndoorTemp and OutdoorTemp.

Input Range — Specifies the input ranges available for each channel supported by
the hardware, and the available values are defined when a device is selected.

Number of ports
Select 1 for all hardware channels (default) or 1 per hardware channel.

Using 1 for all hardware channels, outputs data from a single port as a matrix,
with a size of [1 x Number of Channels selected].

Using 1 per hardware channel, outputs data from N ports, where N is equal to the
number of selected channels. Each output port will be a scalar value. For naming,
each output port will use the channel name if one was specified, or otherwise use
[“HWChannel” + channel ID], for example, HWChannel2.

Block sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 0.01 (seconds).

See Also

Analog Input, Analog Output, Analog Output (Single Sample), Digital Input, Digital
Output

3 Block Reference

3-14

Analog Output

Output data to multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: You cannot use certain devices with Data Acquisition Toolbox Simulink blocks.
Refer to the Supported Hardware page to see if your device supports Simulink use.

Description

The Analog Output block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once
at the start of the model's execution. During the model's run time, the block outputs
data to the hardware either synchronously (outputs the block of data as it is provided) or
asynchronously (buffers output data).

Note: You need a license for both Data Acquisition Toolbox and Simulink software to use
this block.

The block has one or more input ports, depending on the option you choose in the Sink
Block Parameters dialog box. It has no output ports. The following diagram shows the
block configured with one port for both channels and with one port for each channel, in
the case of a device that has two channels selected.

http://www.mathworks.com/products/daq/supportedio.html

Analog Output

3-15

Note: You can use the Analog Output block only with devices that support clocked
generation. The block will error out when the model is run with a device that does not
support clocking. To send data using devices that do not support clocking, use the Analog
Output (Single Sample) block.

The Analog Output block inherits the sample time from the driving block connected to
the input port. The valid data types of the signal at the input port are double or native
data types supported by the hardware.

Other Supported Features

The Analog Output block supports the use of Simulink Accelerator mode. This feature
speeds up the execution of Simulink models.

Note: You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include
other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Sink Block Parameters dialog box to select your acquisition mode and to set
other configuration options.

3 Block Reference

3-16

Output Mode

Asynchronous
Initiates data output to the hardware when simulation starts. The simulation runs
while data is output from a FIFO (First In, First Out) buffer. This mode buffers and
outputs data from the block, letting you perform a frame-based or sample-based
output.

Synchronous

Analog Output

3-17

Initiates data output to the hardware at each time step. The simulation will not
continue running until the current block of data is output. In synchronous mode, the
block synchronously outputs a vector or frame of samples provided at each time step.

The following diagrams show the difference between synchronous and asynchronous
analog output.

Synchronous Analog Output

At the first time step (T1), data output is initiated and the corresponding block of data
(B1) is output to the hardware. The simulation does not continue until B1 is output
completely.

Asynchronous Analog Output – Scenario 1

3 Block Reference

3-18

Scenario 1 shows the case when data output speed outpaces simulation speed. At the first
time step (T1), data output is initiated and the corresponding block of data (B1) is output
to the hardware. The simulation runs continuously in this mode.

Asynchronous Analog Output – Scenario 2

Scenario 2 shows the case when simulation speed outpaces data acquisition speed. At
the first time step (T1), data output is initiated and the corresponding block of data (B1)
is output to the hardware. Data is queued at successive time steps and is output to the
hardware once the previous block completes. The simulation runs continuously in this
mode.

Note: Several factors, including device hardware and model complexity, can affect the
simulation speed, causing both scenarios 1 and 2 to occur within the same simulation.

Options

Device
The data acquisition device to which you want to output data. The items in the list
vary, depending on which devices you have connected to your system. Devices in the
list are specified by adaptor/vendor name and unique device ID, followed by the name
of the device. The first available device is selected by default.

Hardware output rate

Analog Output

3-19

The rate at which samples are output to the device, in samples per second. This
output rate for the hardware is defined when a device is selected. The output rate
specified must be within the range supported by the selected device.

Channels
The channel configuration table lists your device's hardware channels and lets you
configure them. Use the check boxes and selection buttons to specify which channels
to send data to.

Hardware Channel — Displays the channel ID specified by the device, and is read
only.

Name — specifies the channel name. By default the table displays any names
provided by the hardware, but you can edit the names. For example, if the device is a
sound card with two channels, you can name them Left and Right.

Output Range — Specifies the output ranges available for each channel supported
by the hardware, and is defined by the selected device.

Initial Value — Specifies the initial value to be output at the start of the simulation,
if you are using Asynchronous mode. The default value is 0. In Synchronous mode,
the Initial Value column does not appear in the table.

Note: For AC-coupled devices like a sound card, this column is not used and is read
only.

Number of ports
Select 1 for all hardware channels (default) or 1 per hardware channel.

Using 1 for all hardware channels inputs data from a single port as a matrix, with
a size of [S x Number of Channels selected], where S is number of samples provided
as input.

Using 1 per hardware channel inputs data from N ports, where N is equal to
the number of selected channels. Each input port will be a column vector with a
size of [S x 1], where S is the number of samples provided as an input. For naming,
each output port will use the channel name if one was specified, or otherwise use
[“HWChannel” + channel ID], for example, HWChannel2.

3 Block Reference

3-20

See Also

Analog Input, Analog Input (Single Sample), Analog Output (Single Sample), Digital
Input, Digital Output

Analog Output (Single Sample)

3-21

Analog Output (Single Sample)

Output single sample to multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: You cannot use certain devices with Data Acquisition Toolbox Simulink blocks.
Refer to the Supported Hardware page to see if your device supports Simulink use.

Description

The Analog Output (Single Sample) block opens, initializes, configures, and controls
an analog data acquisition device. The opening, initialization, and configuration of the
device occur once at the start of the model's execution. The block outputs a single sample
every sample time, synchronously to the hardware, during the model's run time.

Note: You need a license for both Data Acquisition Toolbox and Simulink software to use
this block.

The block has one or more input ports, depending on the option you choose in the Sink
Block Parameters dialog box. It has no output ports. The following diagram shows the
block configured with one port for both channels and with one port for each channel, in
the case of a device that has two channels selected.

http://www.mathworks.com/products/daq/supportedio.html

3 Block Reference

3-22

Note: You can use Analog Output (Single Sample) block only with devices that support
single sample output. The block will error out when the model is run with a device
that does not support single sample acquisition. To send data using devices that do not
support acquisition of a single sample (like devices designed for sound and vibration), use
the Analog Output block.

The Analog Output (Single Sample) block inherits the sample time from the driving block
connected to the input port. The valid data type of the signal at the input port is double.

Other Supported Features

The Analog Output (Single Sample) block supports the use of Simulink Accelerator mode.
This feature speeds up the execution of Simulink models.

Note: You need the C++ Compiler to use Simulink Accelerator mode.

The Analog Output (Single Sample) block supports the use of model referencing. This
feature lets your model include other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Sink Block Parameters dialog box to select your device and to set other
configuration options.

Analog Output (Single Sample)

3-23

Device
The data acquisition device to which you want to output data. The items in the list
vary, depending on which devices you have connected to your system. Devices in the
list are specified by adaptor/vendor name and unique device ID, followed by the name
of the device. The first available device is selected by default.

Channels
The channel configuration table lists your device's hardware channels and lets you
configure them. Use the check boxes and selection buttons to specify which channels
to acquire data from. These parameters are specified for each selected channel:

Hardware Channel — Displays the hardware channel ID specified by the device.
The Hardware Channel column is read-only and the parameters are defined when
the device is selected.

Name — Specifies the channel name. By default the table will display any names
provided by the hardware, but you can edit the names. For example, if you are

3 Block Reference

3-24

sending data and trigger signals to an output device, you can name them Data and
TriggerStatus.

Output Range — Specifies the output ranges available for each channel supported
by the hardware, and the available values are defined when a device is selected.

Number of ports
Select 1 for all hardware channels (default) or 1 per hardware channel.

Using 1 for all hardware channels, receives data from a single port as a matrix,
with a size of [Block size x Number of Channels selected].

Using 1 per hardware channel, receives data from N ports, where N is equal
to the number of selected channels. Each input port will be a scalar. For naming,
each output port will use the channel name if one was specified, or otherwise use
[“HWChannel” + channel ID], for example, HWChannel2.

See Also

Analog Input, Analog Input (Single Sample), Analog Output, Digital Input, Digital
Output

Digital Input

3-25

Digital Input

Acquire latest set of values from multiple digital lines of data acquisition device

Library

Data Acquisition Toolbox

Note: You cannot use certain devices with Data Acquisition Toolbox Simulink blocks.
Refer to the Supported Hardware page to see if your device supports Simulink use.

Description

The Digital Input block synchronously outputs the latest scan of data available from the
digital lines selected at each simulation time step. It acquires unbuffered digital data,
and the data delivered is a binary vector.

Note: You need a license for both Data Acquisition Toolbox and Simulink software to use
this block.

The block has no input ports. It has one or more output ports, depending on the option
you choose in the Source Block Parameters dialog box. The following diagram shows the
block configured with one port for all lines and with one port for each line, in the case of a
device that has 17 lines selected.

http://www.mathworks.com/products/daq/supportedio.html

3 Block Reference

3-26

The block inherits the sample time of the model.

The output data is always a binary vector (binvec), i.e., a vector of logical values.

Digital input acquisition is done synchronously. The following diagram shows
synchronous digital input.

Digital Input

3-27

At the first time step (T1), data is acquired from the selected hardware lines. The
simulation does not continue until data is read from all lines.

Other Supported Features

The Digital Input block supports the use of Simulink Accelerator mode. This feature
speeds up the execution of Simulink models.

Note: You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include
other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Source Block Parameters dialog box to set configuration options.

3 Block Reference

3-28

Device
The data acquisition device from which you want to acquire data. The items in the
list vary, depending on which devices you have connected to your system. Devices in
the list are specified by adaptor/vendor name and unique device ID, followed by the
name of the device. The first available device is selected by default.

Lines
The line configuration table lists your device's lines and lets you configure them.
The table lists all the lines that can be configured for input. Use the check boxes and
selection buttons to specify which lines to acquire data from.

Hardware Port ID
Specifies the ID for each hardware port. This is automatically detected and filled
in by the selected device, and is read only.

Hardware Line ID
Specifies the ID of the hardware line. This is automatically detected and filled in
by the selected device, and is read only.

Digital Input

3-29

Name
Specifies the hardware line name. This is automatically detected and filled in
from the hardware, though you can edit the name.

Number of ports
Select 1 for all hardware lines (default) or 1 per hardware line.

Using 1 for all hardware lines means that the block will have only one output port
for all of the lines that are selected in the table. Data must be [S x number of lines],
where S is the number of samples. Data will be a binary vector (binvec).

Using 1 per hardware line means the block will have one output port per selected
line. The name of each output port is the name specified in the table for each line.
If no name is provided, the name is “Port” + HwPort ID + “Line” + Line ID. For
example, if line 2 of hardware port 3 is selected, and you did not specify a name in
the line table, Port3Line2 appears in the block. Data will be [1 x 1].

See Also

Analog Input, Analog Input (Single Sample), Analog Output, Analog Output (Single
Sample), Digital Output

3 Block Reference

3-30

Digital Output

Output data to multiple digital lines of data acquisition device

Library

Data Acquisition Toolbox

Note: You cannot use certain devices with Data Acquisition Toolbox Simulink blocks.
Refer to the Supported Hardware page to see if your device supports Simulink use.

Description

The Digital Output block synchronously outputs the latest set of data to the hardware at
each simulation time step. It outputs unbuffered digital data. The output data is always
a binary vector (binvec).

Note: You need a license for both Data Acquisition Toolbox and Simulink software to use
this block.

The block has no output ports. It can have one or more input ports, depending on the
option you choose in the Sink Block Parameters dialog box. The following diagram shows
the block configured with one port for all lines and with one port for each line, in the case
of a device that has 12 lines selected.

http://www.mathworks.com/products/daq/supportedio.html

Digital Output

3-31

The Digital Output block inherits the sample time from the driving block connected to
the input port. The data type of the signal at the input port must be a logical data type.

Digital output is done synchronously. The following diagram shows synchronous digital
output.

3 Block Reference

3-32

At the first time step (T1), data is output to the selected hardware lines. The simulation
does not continue until data is output to all lines.

Other Supported Features

The Digital Output block supports the use of Simulink Accelerator mode. This feature
speeds up the execution of Simulink models.

Note: You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include
other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Sink Block Parameters dialog box to set configuration options.

Digital Output

3-33

Device
The data acquisition device to which you want to output data. The items in the list
vary, depending on which devices you have connected to your system. Devices in the
list are specified by adaptor/vendor name and unique device ID, followed by the name
of the device. The first available device is selected by default.

Lines
The line configuration table lists your device's lines and lets you configure them. Use
the check boxes and selection buttons to specify which lines to send data to.

Hardware Port ID
Specifies the ID for each hardware port. This is automatically detected and filled
in by the selected device, and is read only.

3 Block Reference

3-34

Hardware Line ID
Specifies the ID of the hardware line. This is automatically detected and filled in
by the selected device, and is read only.

Name
Specifies the hardware line name. This is automatically detected and filled in by
the selected device, though you can edit the name.

Number of ports
Select 1 for all hardware lines (default) or 1 per hardware line.

Using 1 for all hardware lines means that the block will have only one input port
for all lines selected in the table. Data needs to be [S x number of lines], where S is
the number of samples. Data at the input port needs to be a binary vector (binvec).

Using 1 per hardware line means the block will have one input port per selected
line. The name of each input port is the name specified in the table for each line.
If no name is provided, the name is “Port” + HwPort ID + Line + Line ID. For
example, if line 2 of port 3 is selected, and you did not specify a name in the line
table, Port3Line2 appears in the block. Data needs to be [1 x 1].

See Also

Analog Input, Analog Input (Single Sample), Analog Output, Analog Output (Single
Sample), Digital Input

4

Functions — Alphabetical List

4 Functions — Alphabetical List

4-2

addchannel
Add hardware channels to analog input or output object

Syntax

chans = addchannel(obj,hwch)

chans = addchannel(obj,hwch,index)

chans = addchannel(obj,hwch,'names')

chans = addchannel(obj,hwch,index,'names')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input or analog output object.
hwch Specifies the numeric IDs of the hardware channels added to the device

object. Any MATLAB vector syntax can be used.
index The MATLAB indices to associate with the hardware channels. Any

MATLAB vector syntax can be used provided the vector elements are
monotonically increasing.

'names' A descriptive channel name or cell array of descriptive channel names.
chans A column vector of channels with the same length as hwch.

Description

chans = addchannel(obj,hwch) adds the hardware channels specified by hwch to
the device object obj. The MATLAB indices associated with the added channels are
assigned automatically. chans is a column vector of channels.

chans = addchannel(obj,hwch,index) adds the hardware channels specified by
hwch to the device object obj. index specifies the MATLAB indices to associate with the
added channels.

 addchannel

4-3

chans = addchannel(obj,hwch,'names') adds the hardware channels specified
by hwch to the device object obj. The MATLAB indices associated with the added
channels are assigned automatically. names is a descriptive channel name or cell array of
descriptive channel names.

chans = addchannel(obj,hwch,index,'names') adds the hardware channels
specified by hwch to the device object obj. index specifies the MATLAB indices to
associate with the added channels. names is a descriptive channel name or cell array of
descriptive channel names.

Examples

National Instruments

Suppose you create the analog input object AI1 for a National Instruments board, and
add the first four hardware channels (channels 0-3) to it.

AI1 = analoginput('nidaq','Dev1');

addchannel(AI1,0:3);

The channels are automatically assigned the indices 1-4. If you want to add the first four
hardware channels to AI1 and assign descriptive names to the channels,

addchannel(AI1,0:3,{'chan1','chan2','chan3','chan4'});

Note that you can use the makenames function to create a cell array of channel names. If
you add channels 4, 5, and 7 to the existing channel group,

addchannel(AI1,[4 5 7]);

the new channels are automatically assigned the indices 5-7. Suppose instead you add
channels 4, 5, and 7 to the channel group and explicitly assign them indices 1-3.

addchannel(AI1,[4 5 7],1:3);

The new channels are assigned the indices 1-3, and the previously defined channels
are reindexed as indices 4-7. However, if you assigned channels 4, 5, and 7 to indices
6-8, an error is returned because there is a gap in the indices (index 5 has no associated
hardware channel).

4 Functions — Alphabetical List

4-4

Sound Card

Suppose you create the analog input object AI1 for a sound card. Most sound cards have
only two channels that can be added to a device object. To configure the sound card to
operate in mono mode, you must specify hwch as 1.

AI1 = analoginput('winsound');

addchannel(AI1,1);

The ChannelName property is automatically assigned the value Mono. You can now
configure the sound card to operate in stereo mode by adding the second channel.

addchannel(AI1,2);

The ChannelName property is assigned the values Left and Right for the two hardware
channels. Alternatively, you can configure the sound card to operate in stereo mode with
one call to addchannel.

addchannel(AI1,1:2);

More About

Tips

Rules for Adding Channels

• The numeric values you supply for hwch depend on the hardware you access. For
National Instruments and Measurement Computing hardware, channels are “zero-
based” (begin at zero). For sound cards, channels are “one-based” (begin at one).

• Hardware channel IDs are stored in the HwChannel property and the associated
MATLAB indices are stored in the Index property.

• You can add individual hardware channels to multiple device objects.
• For sound cards, you cannot add a hardware channel multiple times to the same

device object.
• You can configure sound cards in one of two ways: mono mode or stereo mode. For

mono mode, hwch must be 1. For stereo mode, the first hwch value specified must be
1.

 addchannel

4-5

Note If you are using National Instruments AMUX-64T multiplexer boards, you must
use the addmuxchannel function to add channels.

• When you use the sound card, and only one channel is added to an analog output
object the card is put into mono mode. The same signal is output to both channels.

More About MATLAB Indices

Every hardware channel contained by a device object has an associated MATLAB index
that is used to reference the channel. Index assignments are made either automatically
by addchannel or explicitly with the index argument and follow these rules:

• If index is not specified and no hardware channels are contained by the device object,
then the assigned indices automatically start at one and increase monotonically.
If hardware channels have already been added to the device object, then the
assigned indices automatically start at the next highest index value and increase
monotonically.

• If index is specified but the indices are previously assigned, then the requested
assignment takes precedence and the previous assignment is reindexed to the next
available values. If the lengths of hwch and index are not equal, then an error is
returned and no channels are added to the device object.

• The resulting indices begin at one and increase monotonically up to the size of the
channel group.

• If you are using scanning hardware, then the indices define the scan order.
• Sound cards cannot be reindexed.

Rules for Adding Channels to National Instruments 1200 Series Boards

When using National Instruments 1200 Series hardware, you need to modify the above
rules in these ways:

• Channel IDs are given in reverse order with addchannel. For example, to add eight
single-ended channels to the analog input object ai:

addchannel(ai,7:-1:0);
• The scan order is from the highest ID to the lowest ID (which must be 0).
• There cannot be any gaps in the channel group.

4 Functions — Alphabetical List

4-6

• When channels are configured in differential mode, the hardware IDs are 0, 2, 4, and
6.

More About Descriptive Channel Names

You can assign hardware channels descriptive names, which are stored in the
ChannelName property. Choosing a unique descriptive name can be a useful way to
identify and reference channels. For a single call to addchannel, you can

• Specify one channel name that applies to all channels that are to be added
• Specify a different name for each channel to be added

If the number of names specified in a single addchannel call is more than one but not
equal to the number of channels to be added, then an error is returned. If a channel is to
be referenced by its name, then that name must not contain symbols. If you are naming a
large number of channels, then the makenames function might be useful. If a channel is
not assigned a descriptive name, then it must be referenced by index.

A sound card configured in mono mode is automatically assigned the name Mono, while a
sound card configured in stereo mode is automatically assigned the names Left for the
first channel and Right for the second channel. You can change these default channel
names when the device object is created, or any time after the channel is added.

See Also
delete | makenames | ChannelName | HwChannel | Index

 addline

4-7

addline
Add hardware lines to digital I/O object

Syntax

lines = addline(obj,hwline,'direction')

lines = addline(obj,hwline,port,'direction')

lines = addline(obj,hwline,'direction','names')

lines = addline(obj,hwline,port,'direction','names')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A digital I/O object.
hwline The numeric IDs of the hardware lines added to the device object.

Any MATLAB vector syntax can be used.
'direction' The line directions can be In or Out, and can be specified as a single

value or a cell array of values.
port The numeric IDs of the digital I/O port.
'names' A descriptive line name or cell array of descriptive line names.
lines A column vector of lines with the same length as hwline.

Description

lines = addline(obj,hwline,'direction') adds the hardware lines specified by
hwline to the digital I/O object obj. direction configures the lines for either input or
output. lines is a row vector of lines.

lines = addline(obj,hwline,port,'direction') adds the hardware lines
specified by hwline from the port specified by port to the digital I/O object obj.

4 Functions — Alphabetical List

4-8

lines = addline(obj,hwline,'direction','names') adds the hardware lines
specified by hwline to the digital I/O object obj. names is a descriptive line name or cell
array of descriptive line names.

lines = addline(obj,hwline,port,'direction','names') adds the hardware
lines specified by hwline from the port specified by port to the digital I/O object obj.
direction configures the lines for either input or output. names is a descriptive line
name or cell array of descriptive line names.

You cannot configure lines independently on devices that use the NI-DAQmx adaptor.
Refer to “Line and Port Characteristics” for more information about line configurable
devices.

Examples

Create the digital I/O object dio and add the first four hardware lines (line IDs 0-3) from
port 0.

dio = digitalio('nidaq','Dev1');

addline(dio,0:3,'in');

These lines are automatically assigned the indices 1-4. If you want to add the first four
hardware lines to dio and assign descriptive names to the lines,

addline(dio,0:3,'in',{'line1','line2','line3','line4'});

Note that you can use the makenames function to create a cell array of line names. You
can add the first four hardware lines (line IDs 0-3) from port 1 to the existing line group.

addline(dio,0:3,1,'out');

The new lines are automatically assigned the indices 5-8.

 addline

4-9

More About

Tips

Rules for Adding Lines

• The numeric values you supply for hwline depend on the hardware you access. For
National Instruments and Measurement Computing hardware, line IDs are “zero-
based” (begin at zero).

• You can add a line only once to a given digital I/O object.
• Hardware line IDs are stored in the HwLine property and the associated MATLAB

indices are stored in the Index property.
• For a single call to addline, you can add multiple lines from one port or the same

line ID from multiple ports. You cannot add multiple lines from multiple ports.
• If a port ID is not explicitly referenced, lines are added first from port 0, then from

port 1, and so on.
• You can specify the line directions as a single value or a cell array of values. If a

single direction is specified, then all added lines have that direction. If supported
by the hardware, you can configure individual lines by supplying a cell array of
directions.

More About MATLAB Indices

Every hardware line contained by a device object has an associated MATLAB index that
is used to reference the line. Index assignments are made automatically by addline and
follow these rules:

• If no hardware lines are contained by the device object, then the assigned indices
automatically start at one and increase monotonically. If hardware lines have already
been added to the device object, then the assigned indices automatically start at the
next highest index value and increase monotonically.

• The resulting indices begin at one and increase monotonically up to the size of the line
group.

• The first indexed line represents the least significant bit (LSB) and the highest
indexed line represents the most significant bit (MSB).

4 Functions — Alphabetical List

4-10

More About Descriptive Line Names

You can assign hardware lines descriptive names, which are stored in the LineName
property. Choosing a unique descriptive name can be a useful way to identify and
reference lines. For a single call to addline, you can

• Specify one line name that applies to all lines that are to be added
• Specify a different name for each line to be added

If the number of names specified in a single addline call is more than one but differs
from the number of lines to be added, then an error is returned. If a line is to be
referenced by its name, then that name must not contain symbols. If you are naming
a large number of lines, then the makenames function might be useful. If a line is not
assigned a descriptive name, then it must be referenced by index.

See Also
delete | makenames | HwLine | Index | LineName

 addmuxchannel

4-11

addmuxchannel
Add hardware channels to analog input objects when using National Instruments
multiplexer board

Syntax

addmuxchannel(obj)

addmuxchannel(obj,chanids)

chans = addmuxchannel(...)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input object associated with a National Instruments
Traditional NI-DAQ board.

chanids The hardware channel IDs.
chans The channels that are added to obj.

Description

addmuxchannel(obj) adds as many channels to obj as is physically possible based on
the number of National Instruments AMUX-64T multiplexer (mux) boards specified by
the NumMuxBoards property. For one mux board, 64 channels are added. For two mux
boards, 128 channels are added. For four mux boards, 256 channels are added.

addmuxchannel(obj,chanids) adds the channels specified by chanids to obj.
chanids refers to the hardware channel IDs of the data acquisition board.

The actual number of channels added to obj depends on the number of mux boards used.
For example, suppose you are using a data acquisition board with 16 channels connected
to one mux board. If chanid is 0, then addmuxchannel adds four channels. Refer to

4 Functions — Alphabetical List

4-12

the AMUX-64T User Manual for more information about adding mux channels based on
hardware channel IDs and the number of mux boards used.

chans = addmuxchannel(...) returns the channels added to chans.

More About

Tips

This function is not available for National Instruments NI-DAQmx boards.

Before using addmuxchannel, you must set the NumMuxBoards property to the
appropriate value. You can use as many as four mux boards with one analog input object.
addmuxchannel deletes all channels contained by obj before new channels are added.

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release. See the supported hardware page at www.mathworks.com/
products/daq/supportedio.html for more information.

See Also
muxchanidx

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

 analoginput

4-13

analoginput
Create analog input object

Syntax

AI = analoginput('adaptor')

AI = analoginput('adaptor',ID)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Description

AI = analoginput('adaptor') creates the analog input object AI for a sound card
having an ID of 0 (adaptor must be winsound). This is the only case where ID is not
required.

AI = analoginput('adaptor',ID) creates the analog input object AI for the
specified adaptor and for the hardware device with device identifier ID. ID can be
specified as an integer or a string.

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release. See the supported hardware page at www.mathworks.com/
products/daq/supportedio.html for more information.

Input Arguments

adaptor

The hardware driver adaptor name. The supported adaptors are advantech, , mcc,
nidaq, and winsound.

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

4 Functions — Alphabetical List

4-14

ID

The hardware device identifier. ID is optional if the device object is associated with a
sound card having an ID of 0.

Output Arguments

AI

The analog input object.

Properties

Basic Setup

Channel Properties

Trigger Properties

Logging Properties

Status Properties

Hardware Configuration Properties

Callback Properties

General Purpose Properties

Examples

To create an analog input object for a National Instruments device defined as 'Dev1':

AI = analoginput('nidaq','Dev1');

 analoginput

4-15

To create an analog input object for a Measurement Computing device defined as '1':

AI = analoginput('mcc','1');

Alternatives
“Data Acquisition Session”

More About
Tips

Creating Analog Input Objects

• When an analog input object is created, it does not contain any hardware channels.
To execute the device object, hardware channels must be added with the addchannel
function.

• You can create multiple analog input objects that are associated with a particular
analog input subsystem. However, you can typically execute only one object at a time.

• The analog input object exists in the data acquisition engine and in the MATLAB
workspace. If you create a copy of the device object, it references the original device
object in the engine.

• If ID is a numeric value, then you can specify it as an integer or a string. If ID
contains any nonnumeric characters, then you must specify it as a string. (See the
National Instruments example below.)

• The Name property is automatically assigned a descriptive name that is produced by
concatenating adaptor, ID, and -AI. You can change this name at any time.

Notes When you create an analog input object, it consumes system resources. To avoid
this issue, make sure that you do not create objects in a loop. If you must create objects in
a loop, make sure you delete them within the loop.

Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique number which
identifies the device in software. The device identifier is typically assigned automatically

4 Functions — Alphabetical List

4-16

and can usually be manually changed using a vendor-supplied device configuration
utility. National Instruments refers to this identifier as the device name.

For sound cards, the device identifier is typically not exposed to you through the
Microsoft® Windows® environment. However, Data Acquisition Toolbox software
automatically associates each sound card with an integer ID value. There are two cases
to consider:

• If you have one sound card installed, then ID is 0. You are not required to specify ID
when creating an analog input object associated with this device.

• If you have multiple sound cards installed, the first one installed has an ID of 0, the
second one installed has an ID of 1, and so on. You must specify ID when creating
analog input objects associated with devices not having an ID of 0.

There are two ways you can determine the ID for a particular device:

• Type daqhwinfo('adaptor').
• Execute the vendor-supplied device configuration utility.

See Also
addchannel | daqhwinfo

 analogoutput

4-17

analogoutput
Create analog output object

Syntax

AO = analogoutput('adaptor')

AO = analogoutput('adaptor',ID)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

'adaptor' The hardware driver adaptor name. The supported adaptors are
advantech, mcc, nidaq, and winsound.

ID The hardware device identifier. ID is optional if the device object is
associated with a sound card having an ID of 0.

AO The analog output object.

Description

AO = analogoutput('adaptor') creates the analog output object AO for a sound
card having an ID of 0 (adaptor must be winsound). This is the only case where ID is
not required.

AO = analogoutput('adaptor',ID) creates the analog output object AO for the
specified adaptor and for the hardware device with device identifier ID. ID can be
specified as an integer or a string.

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ

4 Functions — Alphabetical List

4-18

adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release. See the supported hardware page at www.mathworks.com/
products/daq/supportedio.html for more information.

Properties

Basic Setup Properties

Channel Properties

Trigger Properties

Status Properties

Hardware Configuration Properties

Data Management Properties

Callback Properties

General Purpose Properties

Examples

National Instruments

To create an analog output object for a National Instruments device defined as 'Dev1':

AO = analogoutput('nidaq','Dev1');

To create an analog output object for a Measurement Computing device defined as '1':

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

 analogoutput

4-19

AO = analogoutput('mcc','1');

More About

Tips

More About Creating Analog Output Objects

• When an analog output object is created, it does not contain any hardware channels.
To execute the device object, hardware channels must be added with the addchannel
function.

• You can create multiple analog output objects that are associated with a particular
analog output subsystem. However, you can typically execute only one object at a
time.

• The analog output object exists in the data acquisition engine and in the MATLAB
workspace. If you create a copy of the device object, it references the original device
object in the engine.

• If ID is a numeric value, then you can specify it as an integer or a string. If ID
contains any nonnumeric characters, then you must specify it as a string.

• The Name property is automatically assigned a descriptive name that is produced by
concatenating adaptor, ID, and -AO. You can change this name at any time.

Notes When you create an analog output object, it consumes system resources. To avoid
this issue, make sure that you do not create objects in a loop. If you must create objects in
a loop, make sure you delete them within the loop.

More About the Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique number which
identifies the device in software. The device identifier is typically assigned automatically
and can usually be manually changed using a vendor-supplied device configuration
utility. National Instruments refers to this number as the device number.

For sound cards, the device identifier is typically not exposed to you through the
Microsoft Windows environment. However, Data Acquisition Toolbox software

4 Functions — Alphabetical List

4-20

automatically associates each sound card with an integer ID value. There are two cases
to consider:

• If you have one sound card installed, then ID is 0. You are not required to specify ID
when creating an analog output object associated with this device.

• If you have multiple sound cards installed, the first one installed has an ID of 0, the
second one installed has an ID of 1, and so on. You must specify ID when creating
analog output objects associated with devices not having an ID of 0.

There are two ways you can determine the ID for a particular device:

• Type daqhwinfo('adaptor').
• Execute the vendor-supplied device configuration utility.

See Also
addchannel | daqhwinfo | Name

 binvec2dec

4-21

binvec2dec

Convert digital input and output binary vector to decimal value

Syntax

out = binvec2dec(bin)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

bin A binary vector.
out A double array.

Description

out = binvec2dec(bin) converts the binary vector bin to the equivalent decimal
number and stores the result in out. All nonzero binary vector elements are interpreted
as a 1.

Examples

To convert the binvec value [1 1 1 0 1] to a decimal value:

binvec2dec([1 1 1 0 1])

ans =

 23

4 Functions — Alphabetical List

4-22

More About

Tips

A binary vector (binvec) is constructed with the least significant bit (LSB) in the first
column and the most significant bit (MSB) in the last column. For example, the decimal
number 23 is written as the binvec value [1 1 1 0 1].

Note The binary vector cannot exceed 52 values.

See Also
dec2binvec

 clear

4-23

clear
Remove device objects from MATLAB workspace

Syntax

clear obj

clear Channel(obj,index)

clear Line(obj,index)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
Channel(obj,index) One or more channels contained by obj.
Line(obj,index) One or more lines contained by obj.

Description

clear obj removes obj and all associated channels or lines from the MATLAB
workspace, but not from the data acquisition engine.

clear Channel(obj,index) removes the specified channels contained by obj from
the MATLAB workspace, but not from the data acquisition engine.

clear Line(obj,index) removes the specified lines contained by obj from the
MATLAB workspace, but not from the data acquisition engine.

Examples

Create the analog input object ai, copy ai to a new variable aicopy, and then clear the
original device object from the MATLAB workspace.

4 Functions — Alphabetical List

4-24

ai = analoginput('winsound');

ch = addchannel(ai,1:2);

aicopy = ai;

clear ai

Retrieve ai from the engine with daqfind, and show you that ai is identical to aicopy.

ainew = daqfind;

isequal(aicopy,ainew)

ans =

 1

More About

Tips

Clearing device objects, channels, and lines follows these rules:

• clear does not remove device objects, channels, or lines from the data acquisition
engine. Use the delete function for this purpose.

• If multiple references to a device object exist in the workspace, clearing one reference
will not invalidate the remaining references.

• You can restore cleared device objects to the MATLAB workspace with the daqfind
function.

If you use the help command to display the file help for clear, then you must supply
the pathname shown below.

help daq/private/clear

See Also
daqfind | delete

 daqcallback

4-25

daqcallback
Callback function that displays event information for specified event

Syntax

daqcallback(obj,event)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object.
event A variable that captures the event information contained by the

EventLog property.

Description

daqcallback(obj,event) is an example callback function that displays information
to the MATLAB Command Window. For all events, the information includes the event
type and the name of the device object that caused the event to occur. For events that
record the absolute time in EventLog, the event time is also displayed. For run-time
error events, the error message is also displayed.

Examples

Create the analog input object ai and call daqcallback when a trigger event occurs.

ai = analoginput('winsound');

addchannel(ai,1);

ai.TriggerRepeat = 3

ai.TriggerFcn = @daqcallback

4 Functions — Alphabetical List

4-26

start(ai)

More About

Tips

You specify daqcallback as the callback function to be executed for any event by
specifying it as the value for the associated callback property. For analog input objects,
daqcallback is the default value for the DataMissedFcn and RuntimeErrorFcn
properties. For analog output objects, daqcallback is the default value for the
RuntimeErrorFcn property.

You can use the showdaqevents function to easily display event information captured
by the EventLog property.

See Also
showdaqevents | EventLog | DataMissedFcn | RuntimeErrorFcn

 daqfind

4-27

daqfind
Return device objects, channels, or lines from data acquisition engine to MATLAB
workspace

Syntax

out = daqfind

out = daqfind('PropertyName',PropertyValue,...)

out = daqfind(S)

out = daqfind(obj,'PropertyName',PropertyValue,...)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

'PropertyName' A device object, channel, or line property name.
PropertyValue A device object, channel, or line property value.
obj A device object, array of device objects, channels, or lines.
S A structure with field names that are property names and field

values that are property values.
out An array or cell array of device objects, channels, or lines.

Description

out = daqfind returns all device objects that exist in the data acquisition engine. The
output out is an array.

out = daqfind('PropertyName',PropertyValue,...) returns all device objects,
channels, or lines that exist in the data acquisition engine and have the specified
property names and property values. The property name/property value pairs can be
specified as a cell array.

4 Functions — Alphabetical List

4-28

out = daqfind(S) returns all device objects, channels, or lines that exist in the data
acquisition and have the property names and property values specified by S. S is a
structure with field names that are property names and field values that are property
values.

out = daqfind(obj,'PropertyName',PropertyValue,...) returns all device
objects, channels, or lines listed by obj that have the specified property names and
property values.

Examples

You can use daqfind to return a cleared device object.

ai = analoginput('winsound');

ch = addchannel(ai,1:2);

ch.ChannelName = {'Joe';'Jack'}

clear ai

ainew = daqfind;

To return the channel associated with the descriptive name Jack:

ch2 = daqfind(ainew,'ChannelName','Jack');

To return the device object with a sampling rate of 8000 Hz and the descriptive name
winsound0-AI, you can pass a structure to daqfind.

S.Name = 'winsound0-AI';

S.SampleRate = 8000;

daqobj = daqfind(S);

More About

Tips

More About Finding Device Objects, Channels, or Lines

daqfind is particularly useful in these circumstances:

• A device object is cleared from the MATLAB workspace, and it needs to be retrieved
from the data acquisition engine.

 daqfind

4-29

• You need to locate device objects, channels, or lines that have particular property
names and property values.

Rules for Specifying Property Names and Property Values

• You can use property name/property value string pairs, structures, and cell array
pairs in the same call to daqfind. However, in a single call to daqfind, you can
specify only device object properties or channel/line properties.

• You must use the same format as returned by get. For example, if get returns the
ChannelName property value as Left, you must specify Left as the property value in
daqfind (case matters). However, case does not matter when you specify enumerated
property values. For example, daqfind will find a device object with a Running
property value of On or on.

See Also
clear | get | propinfo

4 Functions — Alphabetical List

4-30

daqhelp
Help for device objects, constructors, adaptors, functions, and properties

Syntax

daqhelp

out = daqhelp('name')

out = daqhelp(obj)

out = daqhelp(obj,'name')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

'name' A device object, constructor, adaptor, function, or property name.
obj A device object.
out Contains the specified help text.

Description

daqhelp displays a complete listing of Data Acquisition Toolbox constructors and
functions along with a brief description of each.

out = daqhelp('name') returns help for the device object, constructor, adaptor,
function, or property specified by name. The help text is returned to out.

out = daqhelp(obj) returns a complete listing of functions and properties for the
device object obj to out. Help for obj's constructor is also displayed.

out = daqhelp(obj,'name') returns help for name for the specified device object obj
to out. name can be a constructor, adaptor, property, or function name.

 daqhelp

4-31

Examples

The following commands are some of the ways you can use daqhelp to obtain help on
device objects, constructors, adaptors, functions, and properties.

daqhelp('analogoutput');

out = daqhelp('analogoutput.m');

daqhelp set

daqhelp analoginput/peekdata

daqhelp analoginput.TriggerDelayUnits

The following commands are some of the ways you can use daqhelp to obtain
information about functions and properties for an existing device object.

ai = analoginput('winsound');

daqhelp(ai,'InitialTriggerTime')

out = daqhelp(ai,'getsample');

More About

Tips

As shown below, you can also display help via the Workspace browser by right-clicking a
device object, and selecting Explore > DAQ Help from the context menu.

4 Functions — Alphabetical List

4-32

More About Displaying Help

• When displaying property help, the names in the “See Also” section that contain all
uppercase letters are function names. The names that contain a mixture of upper- and
lowercase letters are property names.

• When displaying function help, the “See Also” section contains only function names.

Rules for Specifying Names

For the daqhelp('name') syntax:

• If name is the name of a constructor, a complete listing of the device object's functions
and properties is displayed along with a brief description of each function and
property. The constructor help is also displayed.

• You can display object-specific function information by specifying name as object/
function. For example, to display the help for an analog input object's getdata
function, name is analoginput/getdata.

• You can display object-specific property information by specifying name as
obj.property. For example, to display the help for an analog input object's
SampleRate property, name is analoginput.SampleRate.

For the daqhelp(obj,'name') syntax:

• If name is the name of a device object constructor and the .m extension is included, the
constructor help is displayed.

• If name is the name of a function or property, the function or property help is
displayed.

See Also
propinfo

 daqhwinfo

4-33

daqhwinfo

Data acquisition hardware information

Syntax

out = daqhwinfo

out = daqhwinfo('adaptor')

out = daqhwinfo('adaptor','FieldName')

out = daqhwinfo(obj)

out = daqhwinfo(obj,'FieldName')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

'adaptor' The hardware driver adaptor name. The supported adaptors are
advantech, mcc, nidaq, parallel, and winsound.

obj A device object or array of device objects.
'FieldName' A single field name or a cell array of field names.
out A structure containing the requested hardware information.

Description

out = daqhwinfo returns general hardware-related information as a structure to out.
The returned information includes installed adaptors, the toolbox and the MATLAB
software version, and the toolbox name.

out = daqhwinfo('adaptor') returns hardware-related information for the specified
adaptor. The returned information includes the adaptor DLL name, the board names
and IDs, and the device object constructor syntax.

4 Functions — Alphabetical List

4-34

Note: If you are trying to discover National Instruments including CompactDAQ or
Counter/Timer subsystem devices, use the daq.getDevices method.

out = daqhwinfo('adaptor','FieldName') returns the hardware-related
information specified by FieldName for adaptor. FieldName must be a single
string. out is a cell array. You can return a list of valid field names with the
daqhwinfo('adaptor') syntax.

out = daqhwinfo(obj) returns hardware-related information for the device object
obj. If obj is an array of device objects, then out is a 1-by-n cell array of structures
where n is the length of obj. The returned information depends on the device object type,
and might include the maximum and minimum sampling rates, the channel gains, the
hardware channel or line IDs, and the vendor driver version.

out = daqhwinfo(obj,'FieldName') returns the hardware-related information
specified by FieldName for the device object obj. FieldName can be a single field name
or a cell array of field names. out is an m-by-n cell array where m is the length of obj
and n is the length of FieldName. You can return a list of valid field names with the
daqhwinfo(obj) syntax.

Examples

Display all installed adaptors. Note that this list might be different for your platform.

out = daqhwinfo;

out.InstalledAdaptors

ans =

 'advantech'

 'mcc'

 'nidaq'

 'parallel'

 'winsound'

To display the device object constructor names for all installed winsound devices:

out = daqhwinfo('winsound');

out.ObjectConstructorName

ans =

 daqhwinfo

4-35

 'analoginput('winsound',0)'

 'analogoutput('winsound',0)'

Create the analog input object ai for a sound card. To display the input ranges for ai:

ai = analoginput('winsound');

out = daqhwinfo(ai);

out.InputRanges

ans =

 -1 1

To display the minimum and maximum sampling rates for ai:

out = daqhwinfo(ai,{'MinSampleRate','MaxSampleRate'})

out =

 [8000] [44100]

Notes The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release.

The Parallel adaptor will be deprecated in a future version of the toolbox. If you create
a Data Acquisition Toolbox™ object for 'parallel' beginning in R2008b, you will
receive a warning stating that this adaptor will be removed in a future release. See the
supported hardware page at www.mathworks.com/products/daq/supportedio.html for
more information.

More About

Tips

As shown below, you can also return hardware information via the Workspace browser
by right-clicking a device object, and selecting Display Hardware Info from the context
menu.

http://www.mathworks.com/products/daq/supportedio.html

4 Functions — Alphabetical List

4-36

 daqmem

4-37

daqmem
Allocate or display analog input and output memory resources

Syntax

out = daqmem

out = daqmem(obj)

daqmem(obj,maxmem)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
maxmem The amount of memory to allocate.
out A structure containing information about memory resources.

Description

out = daqmem returns the object out, which contains several properties describing
the memory resources associated with your platform and Data Acquisition Toolbox. The
fields are described below.

Field Description

MemoryLoad Specifies a number between 0 and 100 that gives a general idea
of current memory utilization. 0 indicates no memory use and 100
indicates full memory use.

TotalPhys Indicates the total number of bytes of physical memory.
AvailPhys Indicates the number of bytes of physical memory available.

4 Functions — Alphabetical List

4-38

Field Description

TotalPageFile Indicates the total number of bytes that can be stored in the
paging file. Note that this number does not represent the actual
physical size of the paging file on disk.

AvailPageFile Indicates the number of bytes available in the paging file.
TotalVirtual Indicates the total number of bytes that can be described in the

user mode portion of the virtual address space of the calling
process.

AvailVirtual Indicates the number of bytes of unreserved and uncommitted
memory in the user mode portion of the virtual address space of
the calling process.

UsedDaq The total memory used by all device objects.

Note that all the above fields, except for UsedDaq, are identical to the fields returned by
Windows' MemoryStatus function.

out = daqmem(obj) returns a 1-by-N structure out containing two fields: UsedBytes
and MaxBytes for the device object obj. N is the number of device objects specified
by obj. UsedBytes returns the number of bytes used by obj. MaxBytes returns the
maximum number of bytes that can be used by obj.

daqmem(obj,maxmem) sets the maximum memory that can be allocated for obj to the
value specified by maxmem.

Examples

Create the analog input object aiwin for a sound card and the analog input object aini
for a National Instruments board, and add two channels to each device object.

aiwin = analoginput('winsound');

addchannel(aiwin,1:2);

aini = analoginput('nidaq','Dev1');

addchannel(aini,0:1);

To display the total memory used by all existing device objects:

out = daqmem;

out.UsedDaq

 daqmem

4-39

ans =

 69120

To configure the maximum memory used by aiwin to 640 KB:

daqmem(aiwin,640000)

To configure the maximum memory used by each device object with one call to daqmem:

daqmem([aiwin aini],[640000 480000])

More About

Tips

More About Allocating and Displaying Memory Resources

• For analog output objects, daqmem(obj,maxmem) controls the value of the
MaxSamplesQueued property.

• If you manually configure the BufferingConfig property, then this
value supersedes the values specified by daqmem(obj,maxmem) and the
MaxSamplesQueued property.

See Also
BufferingConfig | MaxSamplesQueued

4 Functions — Alphabetical List

4-40

daqread
Read Data Acquisition Toolbox (.daq) file for analog input

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

See Also
daqread

 daqregister

4-41

daqregister

Register or unregister hardware driver adaptor

Syntax

daqregister('adaptor')

daqregister('adaptor','unload')

out = daqregister(...)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

'adaptor' The hardware driver adaptor name. The supported adaptors are
advantech, mcc, nidaq, parallel, and winsound.

'unload' Specifies that the hardware driver adaptor is to be unloaded.
out Captures the message returned by daqregister.

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release.

The Parallel adaptor will be deprecated in a future version of the toolbox. If you create
a Data Acquisition Toolbox™ object for 'parallel' beginning in R2008b, you will
receive a warning stating that this adaptor will be removed in a future release. See the
supported hardware page at www.mathworks.com/products/daq/supportedio.html for
more information.

http://www.mathworks.com/products/daq/supportedio.html

4 Functions — Alphabetical List

4-42

Description
daqregister('adaptor') registers the hardware driver adaptor specified by
adaptor.

Notes You must have administrative privileges to register or unregister hardware driver
adaptors.

If you are using a Windows Vista™ machine, you must log on with Administrative
privileges and run MATLAB. You should then execute daqregister with elevated
permissions. This will allow the User Account Control feature on your computer to run
correctly.

For third-party adaptors, adaptor must include the full pathname.

daqregister('adaptor','unload') unregisters the hardware driver adaptor
specified by adaptor. For third-party adaptors, adaptor must include the full
pathname.

out = daqregister(...) captures the resulting message in out.

Examples
The following command registers the sound card adaptor provided with the toolbox.

daqregister('winsound');

The following command registers the third-party adaptor myadaptor.dll. Note that
you must supply the full pathname to daqregister.

daqregister('D:/MATLABR12/toolbox/daq/myadaptors/

myadaptor.dll');

More About
Tips

A hardware driver adaptor must be registered so the data acquisition engine can make
use of its services. Unless an adaptor is unloaded, registration is required only once.

 daqregister

4-43

For adaptors that are included with the toolbox, registration occurs automatically
when you first create a device object. However, you might need to register third-party
adaptors manually. In either case, you must install the associated hardware driver before
registration can occur.

4 Functions — Alphabetical List

4-44

daqreset
Remove device objects, engine MEX-file, and adaptor DLLs from memory

Syntax

daqreset

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Description

daqreset removes all device objects existing in the engine, and unloads all data
acquisition executables loaded by the engine (including the adaptor DLLs and the engine
MEX-file).

You should use daqreset to return the MATLAB workspace to a known initial state of
having no device objects and no data acquisition MEX-file or DLLs loaded in memory.
When the MATLAB workspace returns to this state, the data acquisition hardware is
reset.

Note: daqreset only affects Data Acquisition Toolbox engine and its adaptors. It does
not affect the hardware. To reset the hardware you must use the tools supplied by the
hardware vendor. Refer to your hardware documentation for details.

See Also
clear | delete

 dec2binvec

4-45

dec2binvec
Convert digital input and output decimal value to binary vector

Syntax

out = dec2binvec(dec)

out = dec2binvec(dec,bits)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

dec A decimal value. dec must be nonnegative.
bits Number of bits used to represent the decimal number.
out A logical array containing the binary vector.

Description

out = dec2binvec(dec) converts the decimal value dec to an equivalent binary
vector and stores the result as a logical array in out.

out = dec2binvec(dec,bits) converts the decimal value dec to an equivalent binary
vector consisting of at least the number of bits specified by bits.

Examples

To convert the decimal value 23 to a binvec value:

dec2binvec(23)

ans =

4 Functions — Alphabetical List

4-46

 1 1 1 0 1

To convert the decimal value 23 to a binvec value using six bits:

dec2binvec(23,6)

ans =

 1 1 1 0 1 0

To convert the decimal value 23 to a binvec value using four bits, then the result uses five
bits. This is the minimum number of bits required to represent the number.

dec2binvec(23,4)

ans =

 1 1 1 0 1

More About

Tips

More About Binary Vectors

A binary vector (binvec) is constructed with the least significant bit (LSB) in the first
column and the most significant bit (MSB) in the last column. For example, the decimal
number 23 is written as the binvec value [1 1 1 0 1].

More About Specifying the Number of Bits

• If bits is greater than the minimum number of bits required to represent the decimal
value, then the result is padded with zeros.

• If bits is less than the minimum number of bits required to represent the decimal
value, then the minimum number of required bits is used.

• If bits is not specified, then the minimum number of bits required to represent the
number is used.

See Also
binvec2dec

 delete

4-47

delete

Remove device objects, channels, or lines from data acquisition engine

Syntax

delete(obj)

delete(obj,Channel(index))

delete(obj,Line(index))

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
Channel(obj,index) One or more channels contained by obj.
Line(obj,index) One or more lines contained by obj.

Description

delete(obj) removes the device object specified by obj from the engine. If obj
contains channels or lines, they are removed as well. If obj is the last object accessing
the driver, then the driver and associated adaptor are unloaded.

delete(obj,Channel(index)) removes the channels specified by index and
contained by obj from the engine. As a result, the remaining channels might be
reindexed.

delete(obj,Line(index)) removes the lines specified by index and contained by obj
from the engine. As a result, the remaining lines might be reindexed.

4 Functions — Alphabetical List

4-48

Examples

National Instruments

Create the analog input object ai for a National Instruments board, add hardware
channels 0-7 to it, and make a copy of hardware channels 0 and 1.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:7);

ch = ai.Channel(1:2);

To delete hardware channels 0 and 1:

delete(ch)

These channels are deleted from the data acquisition engine and are no longer associated
with ai. The remaining channels are reindexed such that the indices begin at 1 and
increase monotonically to 6. To delete ai:

delete(ai)

Sound Card

Create the analog input object AI1 for a sound card, and configure it to operate in stereo
mode.

AI1 = analoginput('winsound');

addchannel(AI1,1:2);

You can now configure the sound card for mono mode by deleting hardware channel 2.

delete(AI1.Channel(2))

If hardware channel 1 is deleted instead, an error is returned.

More About

Tips

Deleting device objects, channels, and lines follows these rules:

 delete

4-49

• delete removes device objects, channels, or lines from the data acquisition engine
but not from the MATLAB workspace. To remove variables from the workspace, use
the clear function.

• If multiple references to a device object exist in the workspace, then removing one
device object from the engine invalidates the remaining references. These remaining
references should be cleared from the workspace with the clear function.

• If you delete a device object while it is running, then a warning is issued before it is
deleted. You cannot delete a device object while it is logging or sending data.

You should use delete at the end of a data acquisition session. You can quickly delete
all existing device objects with the command delete(daqfind).

If you use the help command to display the file help for delete, then you must supply
the pathname shown below.

help daq/daqdevice/delete

See Also
clear | daqreset

4 Functions — Alphabetical List

4-50

digitalio
Create digital I/O object

Syntax

DIO = digitalio('adaptor',ID)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

'adaptor' The hardware driver adaptor name. The supported adaptors are
advantech, mcc, nidaq, and parallel.

ID The hardware device identifier.
DIO The digital I/O object.

Description

DIO = digitalio('adaptor',ID) creates the digital I/O object DIO for the specified
adaptor and for the hardware device with device identifier ID. ID can be specified as an
integer or a string.

Notes The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release.

The Parallel adaptor will be deprecated in a future version of the toolbox. If you create
a Data Acquisition Toolbox™ object for 'parallel' beginning in R2008b, you will
receive a warning stating that this adaptor will be removed in a future release. See the
supported hardware page at www.mathworks.com/products/daq/supportedio.html for
more information.

http://www.mathworks.com/products/daq/supportedio.html

 digitalio

4-51

Properties

Common Properties

Line Properties

Examples

Create a digital I/O object for a National Instruments device defined as 'Dev1'.

DIO = digitalio('nidaq','Dev1');

Create a digital I/O object for a Measurement Computing device defined as '1'.

DIO = digitalio('mcc','1');

Create a digital I/O object for parallel port LPT1.

DIO = digitalio('parallel','LPT1');

More About

Tips

More About Creating Digital I/O Objects

• When a digital I/O object is created, it does not contain any hardware lines. To
execute the device object, hardware lines must be added with the addline function.

• You can create multiple digital I/O objects that are associated with a particular digital
I/O subsystem. However, you can execute only one of these digital I/O objects at a
time for the generation of timing events.

• The digital I/O object exists in the data acquisition engine and in the MATLAB
workspace. If you create a copy of the device object, it references the original device
object in the engine.

• The Name property is automatically assigned a descriptive name that is produced by
concatenating adaptor, ID, and -DIO. You can change this name at any time.

4 Functions — Alphabetical List

4-52

Note: When you create a digital input or output object, it consumes system resources. To
avoid this issue, make sure that you do not create objects in a loop. If you must create
objects in a loop, make sure you delete them within the loop.

The Parallel Port Adaptor

The toolbox provides basic DIO capabilities through the parallel port. The PC supports
up to three parallel ports that are assigned the labels LPT1, LPT2, and LPT3. You can
use only these ports. If you add additional ports to your system, or if the standard ports
do not use the default memory resources, they will not be accessible by the toolbox. For
more information about the parallel port, refer to “Parallel Port Characteristics”.

More About the Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique number, which
identifies the device in software. The device identifier is typically assigned automatically
and can usually be manually changed using a vendor-supplied device configuration
utility. National Instruments refers to this number as the device number.

There are two ways you can determine the ID for a particular device:

• Type daqhwinfo('adaptor').
• Open the vendor-supplied device configuration utility.

See Also
addline | daqhwinfo | Name

 disp

4-53

disp

Summary information for device objects, channels, or lines

Syntax

disp(obj)

disp(obj,Channel(index))

disp(obj,Line(index))

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object.
Channel(obj,index) One or more channels contained by obj.
Line(obj,index) One or more lines contained by obj.

Description

disp(obj) displays summary information for the specified device object obj, and any
channels or lines contained by obj. Typing obj at the Command Window produces the
same summary information.

disp(obj,Channel(index)) displays summary information for the specified channels
contained by obj. Typing Channel(obj,index) at the Command Window produces the
same summary information.

disp(obj,Line(index)) displays summary information for the specified lines
contained by obj. Typing obj.Line(index) at the Command Window produces the
same summary information.

4 Functions — Alphabetical List

4-54

Examples

All the commands shown below produce summary information for the device object AI or
the channels contained by AI.

AI = analoginput('winsound')

chans = addchannel(AI,1:2)

AI.SampleRate = 44100

AI.Channel(1).ChannelName = 'CH1'

chans

More About

Tips

You can invoke disp by typing the device object at the MATLAB Command Window or
by excluding the semicolon when

• Creating a device object
• Adding channel or lines
• Configuring property values using the dot notation

As shown below, you can also display summary information via the Workspace browser
by right-clicking a device object, a channel object, or a line object and selecting Explore
> Display Summary from the context menu.

 flushdata

4-55

flushdata

Remove analog input data from data acquisition engine

Syntax

flushdata(obj)

flushdata(obj,'mode')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input object or array of analog input objects.
'mode' Specifies how much data is removed from the engine.

Description

flushdata(obj) removes all data from the data acquisition engine and resets the
SamplesAvailable property to zero.

flushdata(obj,'mode') removes data from the data acquisition engine depending on
the value of mode:

• If mode is all, then flushdata removes all data from the engine and the
SamplesAvailable property is set to 0. This is the same as flushdata(obj).

• If mode is triggers, then flushdata removes the data acquired during one trigger.
triggers is a valid choice only when the TriggerRepeat property is greater than
0 and the SamplesPerTrigger property is not inf. The data associated with the
oldest trigger is removed first.

4 Functions — Alphabetical List

4-56

Examples

Create the analog input object ai for a National Instruments board and add hardware
channels 0-7 to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:7);

A 2-second acquisition is configured and the device object is executed.

ai.SampleRate = 2000

duration = 2;

ActualRate = get(ai,'SampleRate');

ai.SamplesPerTrigger = ActualRate*duration

start(ai)

wait(ai,duration+1)

Four thousand samples will be acquired for each channel group member. To extract 1000
samples from the data acquisition engine for each channel:

data = getdata(ai,1000);

You can use flushdata to remove the remaining 3000 samples from the data acquisition
engine.

flushdata(ai)

ai.SamplesAvailable

ans =

 0

See Also
getdata | SamplesAvailable | SamplesPerTrigger | TriggerRepeat

 get

4-57

get

Device object properties

Syntax

out = get(obj)

out = get(obj,Channel(index))

out = get(obj,Line(index))

out = get(obj,'PropertyName')

out = get(obj,Channel(index),'PropertyName')

out = get(obj,Line(index),'PropertyName')

get(...)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
Channel(obj,index) One or more channels contained by obj.
Line(obj,index) One or more lines contained by obj.
'PropertyName' A property name or a cell array of property names.

Description

out = get(obj) returns the structure out, where each field name is the name of a
property of obj and each field contains the value of that property.

out = get(obj,Channel(index)) returns the structure out, where each field
name is the name of a channel property of obj and each field contains the value of that
property.

4 Functions — Alphabetical List

4-58

out = get(obj,Line(index)) returns the structure out, where each field name is
the name of a line property of obj and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value of the property specified by
PropertyName to out. If PropertyName is replaced by a 1-by-n or n-by-1 cell array of
strings containing property names, then get returns a 1-by-n cell array of values to out.
If obj is an array of data acquisition objects, then out will be an m-by-n cell array of
property values where m is equal to the length of obj and n is equal to the number of
properties specified.

out = get(obj,Channel(index),'PropertyName') returns the value of
PropertyName to out for the specified channels contained by obj. If multiple channels
and multiple property names are specified, then out is an m-by-n cell array where m is
the number of channels and n is the number of properties.

out = get(obj,Line(index),'PropertyName') returns the value of
PropertyName to out for the specified lines contained by obj. If multiple lines and
multiple property names are specified, then out is an m-by-n cell array where m is the
number of lines and n is the number of properties.

get(...) displays all property names and their current values for the specified device
object, channel, or line. Base properties are displayed first followed by device-specific
properties.

Examples

Create the analog input object ai for a sound card and configure it to operate in stereo
mode.

ai = analoginput('winsound');

addchannel(ai,1:2);

More About

Tips

If you use the help command to display the file help for get, then you must supply the
pathname shown below.

 get

4-59

help daq/daqdevice/get

See Also
set | setverify

4 Functions — Alphabetical List

4-60

getdata

Extract analog input data, time, and event information from data acquisition engine

Syntax

data = getdata(obj)

data = getdata(obj,samples)

data = getdata(obj,samples,'type')

[data,time] = getdata(...)

[data,time,abstime] = getdata(...)

[data,time,abstime,events] = getdata(...)

[data,...] = getdata(obj, 'P1', V1, 'P2', V2,...)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input object.
samples The number of samples to extract. If samples is not specified, the

number of samples extracted is given by the SamplesPerTrigger
property.

'type' Specifies the format of the extracted data as double (the default) or
as native.

data An m-by-n array, where m is the number of samples extracted and n is
the number of channels contained by obj.

time An m-by-1 array of relative time values in seconds, where m is the
number of samples extracted. time = 0 is defined as the point at
which data logging begins, i.e., when the Logging property of obj is
set to On. Measurement of time, with respect to 0, continues until the
acquisition is stopped, i.e., when the Logging property of obj is set to
Off.

 getdata

4-61

abstime The absolute time of the first trigger returned as a clock vector. This
value is identical to the value stored by the InitialTriggerTime
property.

events A structure containing a list of events that occurred during the time
period the samples were extracted.

Description
data = getdata(obj) extracts the number of samples specified by the
SamplesPerTrigger property for each channel contained by obj. data is an m-by-n
array, where m is the number of samples extracted and n is the number of channels.

data = getdata(obj,samples) extracts the number of samples specified by samples
for each channel contained by obj.

data = getdata(obj,samples,'type') extracts the number of samples specified
by samples in the format specified by type for each channel contained by obj.

[data,time] = getdata(...) returns data as sample-time pairs. time is an m-by-1
array of relative time values, where m is the number of samples returned in data. Each
element of time indicates the relative time, in seconds, of the corresponding sample in
data, measured with respect to the first sample logged by the engine.

[data,time,abstime] = getdata(...) extracts data as sample-time pairs and
returns the absolute time of the trigger. The absolute time is returned as a clock vector
and is identical to the value stored by the InitialTriggerTime property.

[data,time,abstime,events] = getdata(...) extracts data as sample-time
pairs, returns the absolute time of the trigger, and returns a structure containing a list
of events that occurred during the time period the samples were extracted. The events
returned are a sub set of those stored by the EventLog property.

[data,...] = getdata(obj, 'P1', V1, 'P2', V2,...) specifies the number
of samples to be returned, the format of the data matrix, and whether to return a
tscollection object.

The following table shows a summary of properties.

Property Description

Samples Specify the number of samples to return.

4 Functions — Alphabetical List

4-62

Property Description

DataFormat Specify the data format as double (default) or native.
OutputFormat Specify the output format as matrix (default) or tscollection.

Note: When the ClockSource property for this function is set to one of the External
options, the timing will be controlled externally and the values returned in the time
variable will not accurately reflect the actual relative time of each sample. It is however
an approximation based on the SampleRate you have configured.

Examples

Create the analog input object ai for a National Instruments board and add hardware
channels 0 to 3 to it.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:3);

Configure a 1-second acquisition with SampleRate set to 1000 samples per second and
SamplesPerTrigger set to 1000 samples per trigger.

ai.SampleRate = 1000

ai.SamplesPerTrigger = 1000

start(ai)

The following getdata command blocks execution control until all sample-time pairs,
the absolute time of the trigger, and any events that occurred during the getdata call
are returned.

wait(ai,1)

[data,time,abstime,events] = getdata(ai);

data is returned as a 1000-by-4 array of doubles, time is returned as a 1000-by-1 vector
of relative times, abstime is returned as a clock vector, and events is returned as a 3-
by-1 structure array.

To extract the 1000 data samples from hardware channel 0 only, examine the first
column of data.

chan0_data = data(:,1);

 getdata

4-63

The three events returned are the start event, the trigger event, and the stop event. To
return specific event information about the stop event, you must access the Type and
Data fields.

EventType = events(3).Type;

EventData = events(3).Data;

More About

Tips

More About getdata

• In most circumstances, getdata returns all requested data and does not miss any
samples. In the unlikely event that the engine cannot keep pace with the hardware
device, it is possible that data is missed. If data is missed, the DataMissedFcn
property is called and the device object is stopped.

• getdata is a blocking function because it returns execution control to the MATLAB
workspace only when the requested number of samples is extracted from the engine
for each channel group member.

• You can issue ^C (Ctrl+C) while getdata is blocking. This will not stop the
acquisition but will return control to the MATLAB software.

• The amount of data that you can extract from the engine is given by the
SamplesAvailable property.

• It is a good practice to use a wait command before your getdata command if
the getdata is going to get all data returned by the analog input subsystem. For
example, if your analog input object is ai and you have set duration to be the
number of seconds for the acquisition, you could add the following line right before the
getdata:

wait(ai,duration+1)

• Setting the OutputFormat property to tscollection causes getdata to return a
tscollection object. In this case, only the data left-hand argument is used.

• For more information on using the Time Series functionality, see “Example: Time
Series Objects and Methods” in the MATLAB documentation.

4 Functions — Alphabetical List

4-64

More About Extracting Data From the Engine

• After the requested data is extracted from the engine, the SamplesAvailable
property value is automatically reduced by the number of samples returned.

• If the requested number of samples is greater than the samples to be acquired, then
an error is returned.

• If the requested data is not returned in the expected amount of time, an error is
returned. The expected time to return data is given by the time it takes the engine to
fill one data block plus the time specified by the Timeout property.

• If multiple triggers are included in a single getdata call, a NaN is inserted into the
returned data and time arrays and the absolute time returned is given by the first
trigger.

• When you use multiple immediate triggers Data Acquisition Toolbox cannot
determine the “dead” time between triggers. Because of this, the toolbox assumes the
“dead” time = 1 sample. For example if the sample rate is 1000 samples per second
the toolbox assumes the “dead” time between triggers is one millisecond. The time
argument returned by getdata reflects this assumption.

See Also
flushdata | getsample | peekdata | timeseries | tscollection | wait |
DataMissedFcn | EventLog | SamplesAvailable | SamplesPerTrigger | Timeout

 getsample

4-65

getsample

Immediately acquire one analog input sample

Syntax

sample = getsample(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input object.
sample A row vector containing one sample for each channel contained by obj.

Description

sample = getsample(obj) immediately returns a row vector containing one sample
for each channel contained by obj.

Examples

Create the analog input object ai and add eight channels to it.

ai = analoginput('nidaq','Dev1');

ch = addchannel(ai,0:7);

The following command returns one sample for each channel.

sample = getsample(ai);

4 Functions — Alphabetical List

4-66

More About

Tips

Using getsample is a good way to test your analog input configuration. Additionally:

• getsample does not store samples in, or extract samples from, the data acquisition
engine.

• You can execute getsample at any time after channels have been added to obj.
• getsample is not supported for sound cards and Dynamic Signal Acquisition and

Generation (DSA) cards.

Note: Refer to the “Hardware Limitations by Vendor” section before you access National
Instruments devices with the NI-DAQmx adaptor simultaneously from multiple
applications.

See Also
getdata | peekdata

 getvalue

4-67

getvalue
Read values from digital input and output lines

Syntax

out = getvalue(obj)

out = getvalue(obj,Line(index))

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A digital I/O object.
obj.Line(index) One or more lines contained by obj.
out A binary vector.

Description

out = getvalue(obj) returns the current value from all lines contained by obj as a
binary vector to out.

out = getvalue(obj,Line(index)) returns the current value from the lines
specified by obj.Line(index).

Examples

Create the digital I/O object dio and add eight input lines to it.

dio = digitalio('nidaq','Dev1');

lines = addline(dio,0:7,'in');

4 Functions — Alphabetical List

4-68

To return the current values from all lines contained by dio as a binvec value:

out = getvalue(dio);

More About

Tips

More About Reading Values from Lines

• By default, out is returned as a binary vector (binvec). A binvec value is constructed
with the least significant bit (LSB) in the first column and the most significant bit
(MSB) in the last column. For example, the decimal number 23 is written as the
binvec value [1 1 1 0 1].

• You can convert a binvec value to a decimal value with the binvec2dec function.
• If obj contains lines from a port-configurable device, the data acquisition engine

will automatically read from all the lines even if they are not contained by the device
object.

• When obj contains lines configured for output, getvalue returns the most recently
output value set by putvalue. If you have not called putvalue since you created
the digitalio object, then getvalue returns a 0. getvalue cannot ascertain the
current output value on the hardware.

Note: Refer to the “Hardware Limitations by Vendor” section before you access National
Instruments devices with the NI-DAQmx adaptor simultaneously from multiple
applications.

See Also
binvec2dec

 inspect

4-69

inspect
Open Property Inspector

Syntax

inspect(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An object or an array of objects.

Description

inspect(obj) opens the Property Inspector and allows you to inspect and set properties
for the object obj.

Examples

Create the analog input object ai for a sound card and add two channels.

ai = analoginput('winsound');

addchannel(ai,1:2);

Open the Property Inspector for the object ai.

inspect(ai)

The Property Inspector is shown below.

You can expand the properties that are arrays of objects. In the following figure, the
Channel property is expanded to enumerate the individual channel objects that make up
this property.

4 Functions — Alphabetical List

4-70

You can also expand these individual channel objects to display their own properties, as
shown for channel 1.

 inspect

4-71

More About

Tips

You can also open the Property Inspector via the Workspace browser by double-clicking
an object in the Workspace list.

The Property Inspector does not automatically update its display. To refresh the Property
Inspector, open it again.

See Also
daqfind | daqhelp | get | propinfo | set

4 Functions — Alphabetical List

4-72

ischannel

Check for channels

Syntax

out = ischannel(obj,Channel(index))

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

Channel(obj,index) One or more channels contained by obj.
out A logical value.

Description

out = ischannel(obj,Channel(index)) returns a logical 1 to out if
Channel(obj,index) is a channel. Otherwise, a logical 0 is returned.

Examples

Suppose you create the function myfunc for use with Data Acquisition Toolbox software.
If myfunc is passed one or more channels as an input argument, then the first thing you
should do in the function is check if the argument is a channel.

function myfunc(chan)

% Determine if a channel was passed.

if ~ischannel(chan)

 error('The argument passed is not a channel.');

end

 ischannel

4-73

You can examine Data Acquisition Toolbox software files for examples that use
ischannel.

More About

Tips

ischannel does not determine if channels are valid (associated with hardware). To
check for valid channels, use the isvalid function.

Typically, you use ischannel directly only when you are creating your own files.

See Also
isvalid

4 Functions — Alphabetical List

4-74

isdioline

Check for lines

Syntax

out = isdioline(obj,Line(index))

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj.Line(index) One or more lines contained by obj.
out A logical value.

Description

out = isdioline(obj,Line(index)) returns a logical 1 to out if obj.Line(index)
is a line. Otherwise, a logical 0 is returned.

Examples

Suppose you create the function myfunc for use with Data Acquisition Toolbox software.
If myfunc is passed one or more lines as an input argument, then the first thing you
should do in the function is check if the argument is a line.

function myfunc(line)

% Determine if a line was passed.

if ~isdioline(line)

 error('The argument passed is not a line.');

end

 isdioline

4-75

You can examine Data Acquisition Toolbox software files for examples that use
isdioline.

More About

Tips

isdioline does not determine if lines are valid (associated with hardware). To check for
valid lines, use the isvalid function.

Typically, you use isdioline directly only when you are creating your own files.

See Also
isvalid

4 Functions — Alphabetical List

4-76

islogging
Determine whether analog input object is logging data

Syntax

bool = islogging(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Description

bool = islogging(obj) returns true if the analog input object obj is logging data,
otherwise false. An analog input object is logging if the value of its Logging property is
set to On.

If obj is an array of analog input objects, bool is a logical array where each element in
bool represents the corresponding element in obj. If an object in obj is logging data,
islogging sets the corresponding element in bool to true, otherwise false. If any of
the analog input objects in obj is invalid, islogging returns an error.

Examples

Create an analog input object and add a channel.

ai = analoginput('winsound');

addchannel(ai, 1)

To put the analog input object in a logging state, start acquiring data. The example
acquires 10 seconds of data to increase the amount of time that the object remains in the
logging state.

ai.SamplesPerTrigger = 10*

ai.SampleRate

start(ai)

 islogging

4-77

When the call to the start function returns, and the object is still acquiring data, use
islogging to check the state of the object.

bool = islogging(ai)

bool =

 1

Create a second analog input object.

ai2 = analoginput('winsound');

Start one of the analog input objects again, such as ai, and use islogging to determine
which of the two objects is logging.

start(ai)

bool = islogging([ai ai2])

bool =

 1 0

See Also
isrunning | issending | start | stop | Logging | LoggingMode

4 Functions — Alphabetical List

4-78

isrunning
Determine whether device object is running

Syntax

bool = isrunning(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Description

bool = isrunning(obj) returns true if the device object obj is running, otherwise
false. A device object is running if the value of its Running property is set to On.

If obj is an array of device objects, bool is a logical array where each element in
bool represents the corresponding element in obj. If an object in obj is running, the
isrunning function sets the corresponding element in bool to true, otherwise false.
If any of the device objects in obj is invalid, isrunning returns an error.

Examples

Create an analog input object and add a channel.

ai = analoginput('winsound');

addchannel(ai, 1)

To put the analog input object in a running state, configure a manual trigger and then
start the object.

ai.TriggerType, 'Manual')

start(ai)

Use isrunning to check the state of the object.

bool = isrunning(ai)

 isrunning

4-79

bool =

 1

Create an analog output object.

ao = analogoutput('winsound');

Use isrunning to determine which of the two objects is running.

bool = isrunning([ai ao])

bool =

 1 0

See Also
islogging | issending | start | stop | Running

4 Functions — Alphabetical List

4-80

issending
Determine whether analog output object is sending data

Syntax

bool = issending(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Description

bool = issending(obj) returns true if the analog output object obj is sending data
to the hardware device, otherwise false. An analog output object is sending if the value
of its Sending property is set to On.

If obj is an array of analog output objects, bool is a logical array where each element
in bool represents the corresponding element in obj. If an object in obj is sending, the
issending function sets the corresponding element in bool to true, otherwise false.
If any of the analog output objects in obj is invalid, issending returns an error.

Examples

Create an analog output object and add a channel.

ao = analogoutput('winsound');

addchannel(ao, 1);

To put the analog output object in a sending state, start acquiring data. The example
sends 10 seconds of data to increase the amount of time that the object remains in the
sending state.

rate = ao.SampleRate

putdata(ao, ones(10*(rate),1));

start(ao)

 issending

4-81

When the call to the start function returns, and the object is still sending data, use
issending to check the state of the object.

bool = issending(ao)

bool =

 1

Create a second analog output object.

ao2 = analogoutput('winsound');

Start one of the analog output objects again, such as ao, and use issending to
determine which of the two objects is sending.

rate = ao.SampleRate

putdata(ao, ones(10*(rate),1));

start(ao)

bool = issending([ao ao2])

bool =

 1 0

See Also
islogging | isrunning | start | stop | Sending

4 Functions — Alphabetical List

4-82

isvalid

Determine whether device objects, channels, or lines are valid

Syntax

out = isvalid(obj)

out = isvalid(obj,Channel(index))

out = isvalid(obj,Line(index))

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
Channel(obj,index) One or more channels contained by obj.
Line(obj,index) One or more lines contained by obj.
out A logical array.

Description

out = isvalid(obj) returns a logical 1 to out if obj is a valid device object.
Otherwise, a logical 0 is returned.

out = isvalid(obj,Channel(index)) returns a logical 1 to out if the channels
specified by Channel(obj,index) are valid. Otherwise, a logical 0 is returned.

out = isvalid(obj,Line(index)) returns a logical 1 to out if the lines specified by
obj.Line(index) are valid. Otherwise, a logical 0 is returned.

 isvalid

4-83

Examples

Create the analog input object ai for a National Instruments board and add eight
channels to it.

ai = analoginput('nidaq','Dev1');

ch = addchannel(ai,0:7);

To verify the device object is valid:

isvalid(ai)

ans =

 1

To verify the channels are valid:

isvalid(ch)'

ans =

 1 1 1 1 1 1 1 1

If you delete a channel, then isvalid returns a logical 0 in the appropriate location:

delete(ai.Channel(3))

isvalid(ch)'

ans =

 1 1 0 1 1 1 1 1

Typically, you use isvalid directly only when you are creating your own files. Suppose
you create the function myfunc for use with Data Acquisition Toolbox software. If
myfunc is passed the previously defined device object ai as an input argument,

myfunc(ai)

the first thing you should do in the function is check if ai is a valid device object.

function myfunc(obj)

% Determine if an invalid handle was passed.

if ~isvalid(obj)

 error('Invalid data acquisition object passed.');

end

You can examine Data Acquisition Toolbox software files for examples that use isvalid.

4 Functions — Alphabetical List

4-84

More About

Tips

Invalid device objects, channels, and lines are no longer associated with any hardware
and should be cleared from the workspace with the clear function.

Typically, you use isvalid directly only when you are creating your own files.

See Also
clear | delete | ischannel | isdioline

 length

4-85

length
Length of device object, channel group, or line group

Syntax

out = length(obj)

out = length(obj,Channel)

out = length(obj,Line)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
Channel(obj) The channels contained by obj.
Line(obj) The lines contained by obj.
out A double.

Description

out = length(obj) returns the length of the device object obj to out.

out = length(obj,Channel) returns the length of the channel group contained by
obj.

out = length(obj,Line) returns the length of the line group contained by obj.

Examples

Create the analog input object ai for a National Instruments board and add eight
channels to it.

4 Functions — Alphabetical List

4-86

ai = analoginput('nidaq','Dev1');

aich = addchannel(ai,0:7);

Create the analog output object ao for a National Instruments board, add one channel to
it, and create the device object array aiao.

ao = analogoutput('nidaq','Dev1');

aoch = addchannel(ao,0);

aiao = [ai ao]

Index: Subsystem: Name:

 1 Analog Input nidaqmxDev1-AI

 2 Analog Output nidaqmxDev1-AO

To find the length of aiao:

length(aiao)

ans =

 2

To find the length of the analog input channel group:

length(aich)

ans =

 8

See Also
size

 load

4-87

load
Load device objects, channels, or lines into MATLAB workspace

Syntax
load file

load file obj1 obj2...

out = load('file','obj1','obj2',...)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments
file The MAT-file name.
obj1 obj2... Device objects, an array of device objects, channels, or lines.
out A structure containing the loaded device objects.

Description
load file returns all variables from the MAT-file file into the MATLAB workspace.

load file obj1 obj2... returns the specified device objects from the MAT-file file
into the MATLAB workspace.

out = load('file','obj1','obj2',...) returns the specified device objects
from the MAT-file file as a structure to out instead of directly loading them into the
workspace. The field names in out match the names of the loaded device objects. If no
device objects are specified, then all variables existing in the MAT-file are loaded.

Examples
This example illustrates the behavior of load when the loaded device object has
properties that differ from the workspace object.

4 Functions — Alphabetical List

4-88

ai = analoginput('winsound');

addchannel(ai,1:2);

save ai

ai.SampleRate = 10000;

load ai

Warning: Loaded object has updated property values.

More About

Tips

Loading device objects follows these rules:

• Unique device objects are loaded into the MATLAB workspace as well as the engine.
• If a loaded device object already exists in the engine but not the MATLAB workspace,

the loaded device object automatically reconnects to the engine device object.
• If a loaded device object already exists in the workspace or the engine but has

different properties than the loaded object, then these rules are followed:

• The read-only properties are automatically reset to their default values.
• All other property values are given by the loaded object and a warning is issued

stating that property values of the workspace object have been updated.
• If the workspace device object is running, then it is stopped before loading occurs.
• If identical device objects are loaded, then they point to the same device object in the

engine. For example, if you saved the array

x = [ai1 ai1 ai2]

only ai1 and ai2 are created in the engine, and x(1) will equal x(2).
• Values for read-only properties are restored to their default values upon loading. For

example, the EventLog property is restored to an empty vector. Use the propinfo
function to determine if a property is read only.

• Values for the BufferingConfig property when the BufferingMode property is
set to Auto, and the MaxSamplesQueued property might not be restored to the same
value because both these property values are based on available memory.

 load

4-89

Note load is not used to read in acquired data that has been saved to a log file. You
should use the daqread function for this purpose.

If you use the help command to display the help for load, then you must supply the
pathname shown below.

help daq/private/load

See Also
daqread | propinfo | save

4 Functions — Alphabetical List

4-90

makenames
List descriptive channel or line names

Syntax

names = makenames('prefix',index)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

'prefix' A string that constitutes the first part of the name.
index Numbers appended to the end of prefix — any MATLAB vector

syntax can be used to specify index as long as the numbers are
positive.

names An m-by-1 cell array of channel names where m is the length of index.

Description

names = makenames('prefix',index) generates a cell array of descriptive channel
or line names by concatenating prefix and index.

Examples

Create the analog input object AI. You can use makenames to define descriptive names
for each channel that is to be added to AI.

AI = analoginput('nidaq','Dev1');

names = makenames('chan',1:8);

names is an eight-element cell array of channel names chan1, chan2,..., chan8. You can
now pass names as an input argument to the addchannel function.

 makenames

4-91

addchannel(AI,0:7,names);

More About

Tips

You can pass names as an input argument to the addchannel or addline function.

If names contains more than one descriptive name, then the size of names must agree
with the number of hardware channels specified in addchannel, or the number of
hardware lines specified in addline.

If the channels or lines are to be referenced by name, then prefix must begin with a
letter and contain only letters, numbers, and underscores. Otherwise the names can
contain any character.

See Also
addchannel | addline

4 Functions — Alphabetical List

4-92

muxchanidx
Multiplexed scanned analog input channel index

Syntax

scanidx = muxchanidx(obj,muxboard,muxidx)

scanidx = muxchanidx(obj,absmuxidx)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input object associated with a National Instruments
Traditional NI-DAQ board.

muxboard The multiplexer board.
muxidx The index number of the multiplexed channel.
absmuxidx The absolute index number of the multiplexed channel.
scanidx The scanning index number of the multiplexed channel.

Description

scanidx = muxchanidx(obj,muxboard,muxidx) returns the scanning index number
of the multiplexed channel specified by muxidx. The multiplexer (mux) board is specified
by muxboard. For each mux board, muxidx can range from 0-31 for differential inputs
and 0-63 for single-ended inputs. muxboard and muxidx are vectors of equal length.

scanidx = muxchanidx(obj,absmuxidx) returns the scanning index number of the
multiplexed channel specified by absmuxidx. absmuxidx is the absolute index of the
channel independent of the mux board.

For single-ended inputs, the first mux board has absolute index values that range
between 0 and 63, the second mux board has absolute index values that range between

 muxchanidx

4-93

64 and 127, the third mux board has absolute index values that range between 128 and
191, the fourth mux board has absolute index values that range between 192 and 255.
For example, the absolute index value of the second single-ended channel on the fourth
mux board (muxboard is 4 and muxidx is 1) is 193.

Note: The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ
adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be
removed in a future release. See the supported hardware page at www.mathworks.com/
products/daq/supportedio.html for more information.

Examples

Create the analog input object ai for a National Instruments board that is connected to
four AMUX-64T multiplexers, and add 256 channels to ai using addmuxchannel.

ai = analoginput('nidaq',1);

ai.InputType = 'SingleEnded';

ai.NumMuxBoards = 4;

addmuxchannel(ai);

The following two commands return a scanned index value of 14.

scanidx = muxchanidx(ai,4,1);

scanidx = muxchanidx(ai,193);

More About

Tips

scanidx identifies the column number of the data returned by getdata and peekdata.

Refer to the AMUX-64T User Manual for more information about adding mux channels
based on hardware channel IDs and the number of mux boards used.

See Also
addmuxchannel

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

4 Functions — Alphabetical List

4-94

obj2mfile
Convert device objects, channels, or lines to MATLAB code

Syntax

obj2mfile(obj,'file')

obj2mfile(obj,'file','syntax')

obj2mfile(obj,'file','all')

obj2mfile(obj,'file','syntax','all')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object, array of device objects, channels, or lines.
'file' The file that the MATLAB code is written to. The full pathname can be

specified. If an extension is not specified, the .m extension is used.
'syntax' Syntax of the converted the MATLAB code. By default, the set syntax

is used. If dot is specified, then the subscripted referencing syntax is
used. If named is specified, then named referencing is used (if defined).

'all' If all is specified, all properties are written to file. If all is not
specified, only properties that are not set to their default values are
written to file.

Description

obj2mfile(obj,'file') converts obj to the equivalent MATLAB code using the set
syntax and saves the code to file. By default, only those properties that are not set to
their default values are written to file.

obj2mfile(obj,'file','syntax') converts obj to the equivalent MATLAB code
using syntax and saves the code to file. The values for syntax can be set, dot, or

 obj2mfile

4-95

named. set uses the set syntax, dot uses subscripted assignment (dot notation), and
named uses named referencing (if defined).

obj2mfile(obj,'file','all') converts obj to the equivalent MATLAB code using
the set syntax and saves the code to file. all specifies that all properties are written
to file.

obj2mfile(obj,'file','syntax','all') converts obj including all of obj's
properties to the equivalent MATLAB code using syntax and saves the code to file.

Examples

Create the analog input object ai for a sound card, add two channels, and set values for
several properties.

ai = analoginput('winsound');

addchannel(ai,1:2);

ai.Tag = 'myai','

ai.TriggerRepeat = 4

ai.StartFcn = {@mycallback,2,magic(10)}

The following command writes MATLAB code to the files myai.m and myai.mat.

obj2mfile(ai,'myai.m','dot')

myai.m contains code that recreates the analog input code shown above using the dot
notation for all properties that have their default values changed. Because StartFcn is
set to a cell array of values, this property appears in myai.m as

ai.StartFcn = startfcn1;

and is saved in myai.mat as

startfcn1 = {@mycallback,2,magic(10)};

To recreate ai and assign the device object to a new variable ainew:

ainew = myai;

The associated MAT-file, myai.mat, is automatically loaded.

4 Functions — Alphabetical List

4-96

More About

Tips

If the UserData property is not empty or if any of the callback properties are set to a cell
array of values or a function handle, then the data stored in those properties is written to
a MAT-file when the object is converted and saved. The MAT-file has the same name as
the file containing the object code (see the example below).

You can recreate the saved device objects by typing the name of the file at the Command
Window. You can also recreate channels or lines, by typing the name of the file with a
device object as the only input.

 peekdata

4-97

peekdata

Preview most recent acquired analog input data

Syntax

data = peekdata(obj,samples)

data = peekdata(obj,samples,'type')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input object.
samples The number of samples to preview for each channel contained by obj.
'type' Specifies the format of the extracted data as double (the default) or

as native.
data An m-by-n matrix where m is the number of samples and n is the

number of channels.

Description

data = peekdata(obj,samples) returns the latest number of samples specified by
samples to data.

data = peekdata(obj,samples,'type') returns the number of samples specified by
samples in the format specified by type for each channel contained by obj. If type is
specified as native, the data is returned in the native data format of the device. If type
is specified as double (the default), the data is returned as doubles.

4 Functions — Alphabetical List

4-98

Examples

Create the analog input object ai for a National Instruments board, add eight input
channels, and configure ai for a two-second acquisition.

ai = analoginput('nidaq','Dev1');

addchannel(ai,0:7);

ai.SampleRate = 2000

ai.SamplesPerTrigger = 4000

After issuing the start function, you can preview the data.

start(ai)

data = peekdata(ai,100);

peekdata returns 100 samples of data for each of the eight channels added to the object.
If 100 samples are not available, then whatever samples are available will be returned
and a warning message is issued. The data is not removed from the data acquisition
engine.

More About

Tips

More About Using peekdata

• Unlike getdata, peekdata is a nonblocking function that immediately returns
control to the MATLAB workspace. Because peekdata does not block execution
control, data might be missed or repeated.

• peekdata takes a “snapshot” of the most recent acquired data and does not remove
samples from the data acquisition engine. Therefore, the SamplesAvailable
property value is not affected when peekdata is called.

Rules for Using peekdata

• You can call peekdata before a trigger executes. Therefore, peekdata is useful for
previewing data before it is logged to the engine or to a disk file.

• In most cases, you will call peekdata while the device object is running. However,
you can call peekdata once after the device object stops running.

 peekdata

4-99

• If samples is greater than the number of samples currently acquired, all available
samples are returned with a warning message stating that the requested number of
samples were not available.

• If you start an analog input object and LoggingMode is Memory or Disk&Memory,
extract the acquired data from the engine, using getdata. You can also flush it out
using flushdata. If you do not extract or flush data, you receive a DataMissed
event when the amount of acquired data reaches the MaxBytes limit for the object as
seen by daqmem. The acquisition then stops.

See Also
daqmem | flushdata | getdata | getsample | SamplesAvailable

4 Functions — Alphabetical List

4-100

propinfo
Property characteristics for device objects, channels, or lines

Syntax

out = propinfo(obj)

out = propinfo(obj,'PropertyName')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object, channels, or lines.
'PropertyName' A valid obj property name.
out A structure whose field names are the property names for obj

(if PropertyName is not specified).

Description

out = propinfo(obj) returns the structure out whose field names are the property
names for obj. Each property name in out contains the fields shown below.

Field Name Description

Type The property data type. Possible values are any, callback,
double, and string.

Constraint The type of constraint on the property value. Possible values are
bounded, callback, enum, and none.

ConstraintValue The property value constraint. The constraint can be a range of
valid values or a list of valid string values.

DefaultValue The property default value.

 propinfo

4-101

Field Name Description

ReadOnly Indicates when the property is read-only. Possible values are
always, never, and whileRunning.

DeviceSpecific If the property is device-specific, a 1 is returned. If a 0 is
returned, the property is supported for all device objects of a
given type.

out = propinfo(obj,'PropertyName') returns the structure out for the property
specified by PropertyName. If PropertyName is a cell array of strings, a cell array of
structures is returned for each property.

Examples

Create the analog input object ai for a sound card and configure it to operate in stereo
mode.

ai = analoginput('winsound');

addchannel(ai,1:2);

To capture all property information for all common ai properties:

out = propinfo(ai);

To display the default value for the SampleRate property:

ai.SampleRate.DefaultValue

ans =

 8000

To display all the property information for the InputRange property:

propinfo(ai.Channel,'InputRange')

ans =

 Type: 'double'

 Constraint: 'Bounded'

 ConstraintValue: [-1 1]

 DefaultValue: [-1 1]

 ReadOnly: 'whileRunning'

 DeviceSpecific: 0

4 Functions — Alphabetical List

4-102

See Also
daqhelp

 putdata

4-103

putdata
Queue analog output data in engine for eventual output

Syntax

putdata(obj,data)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog output object.
data The data to be queued in the engine.

Description

putdata(obj,data) queues the data specified by data in the engine for eventual
output to the analog output subsystem. data must consist of a column of data for
each channel contained by obj. That is, data must be an m-by-n matrix, where m
rows correspond to the number of samples and n columns correspond to the number of
channels in obj.

data can consist of doubles or native data types but cannot contain NaNs. data must
contain a column of data for each channel contained in obj. If data contains any data
points that are not within the UnitsRange of the channel it pertains to, the data points
will be clipped to the bounds of the UnitsRange property.

data can be a tscollection object or timeseries object. If data is a tscollection
object, there must be one timeseries per channel in obj. If data is a timeseries
object, there must be only one channel in obj. If the tscollection or timeseries
object contains gaps, or is sampled at a different rate than the SampleRate of obj, the
data will be resampled at the rate of obj using a zero order hold.

4 Functions — Alphabetical List

4-104

For more information on using the Time Series functionality, see “Example: Time Series
Objects and Methods” in the MATLAB documentation.

Examples

Create the analog output object ao for a National Instruments board, add two output
channels to it, and generate 10 seconds of data to be output.

ao = analogoutput('nidaq','Dev1');

ch = addchannel(ao,0:1);

ao.SampleRate = 1000

data = linspace(0,1,10000)';

Before you can output data, it must be queued in the engine using putdata.

putdata(ao,[data data])

start(ao)

More About

Tips

More About Queuing Data

• Data must be queued in the engine before obj is executed.
• putdata is a blocking function because it returns execution control to the MATLAB

workspace only when the requested number of samples is queued in the engine for
each channel group member.

• If the value of the RepeatOutput property is greater than 0, then all queued data is
automatically requeued until the RepeatOutput value is reached. RepeatOutput
must be configured before start is issued.

• After obj executes, you can continue to queue data unless RepeatOutput is greater
than 0.

• Due to buffering constraints on certain devices, additional data queued close to the
termination of the previous data may not be output to the device. To insure that all
data is output, queue additional data well before the device has output all data.

 putdata

4-105

• You can queue data in the engine until the value specified by the MaxSamplesQueued
property is reached, or the limitations of your hardware or computer are reached.

• You should not modify the BitsPerSample, InputRange, SensorRange, and
UnitsRange properties after calling putdata. If these properties are modified, all
data is deleted from the data acquisition engine. If you add a channel after calling
putdata, all data will be deleted from the buffer.

• The timeseries object must contain a single column of data.

More About Outputting Data

• Data is output as soon as a trigger occurs.
• An error is returned if a NaN is included in the data stream.
• You can specify data as the native data type of the hardware.
• If the output data is not within the range specified by the OutputRange property,

then the data is clipped.
• The SamplesOutput property keeps a running count of the total number of samples

that have been output per channel.
• The SamplesAvailable property tells you how many samples are ready to be

output from the engine per channel. After data is output, SamplesAvailable is
automatically reduced by the number of samples sent to the hardware.

See Also
putsample | timeseries | tscollection | MaxSamplesQueued | OutputRange |
RepeatOutput | SamplesAvailable | SamplesOutput | Timeout | UnitsRange

4 Functions — Alphabetical List

4-106

putsample

Immediately output one analog output sample

Syntax

putsample(obj,data)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog output object.
data The data to be queued in the engine.

Description

putsample(obj,data) immediately outputs the row vector data, which consists of one
sample for each channel contained by obj.

Examples

Create the analog output object ao for a National Instruments board and add two
hardware channels to it.

ao = analogoutput('nidaq','Dev1');

ch = addchannel(ao,0:1);

To call putsample for ao:

putsample(ao,[1 1])

 putsample

4-107

More About

Tips

Using putsample is a good way to test your analog output configuration. Additionally:

• putsample does not store samples in the data acquisition engine.
• putsample can be executed at any time after channels have been added to obj.
• putsample is not supported for sound cards and Dynamic Signal Acquisition and

Generation (DSA) cards.

Note: Refer to the “Hardware Limitations by Vendor” section before you access National
Instruments devices with the NI-DAQmx adaptor simultaneously from multiple
applications.

See Also
putdata

4 Functions — Alphabetical List

4-108

putvalue
Write values to digital output lines

Syntax

putvalue(obj,data)

putvalue(obj,Line(index),data)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A digital I/O object.
obj.Line(index) One or more lines contained by obj.
data A decimal value or binary vector.

Description

putvalue(obj,data) writes data to the hardware lines contained by the digital I/O
object obj.

putvalue(obj,Line(index),data) writes data to the hardware lines specified by
obj.Line(index).

Examples

Create the digital I/O object dio and add four output lines to it.

dio = digitalio('nidaq','Dev1');

lines = addline(dio,0:3,'out');

Write the value 8 as a decimal value and as a binary vector.

 putvalue

4-109

putvalue(dio,8)

putvalue(dio,[0 0 0 1])

More About

Tips

More About Writing Values to Lines

• You can specify data as either a decimal value or a binary vector. A binary vector (or
binvec) is constructed with the least significant bit (LSB) in the first column and the
most significant bit (MSB) in the last column. For example, the decimal number 23 is
written as the binary vector [1 1 1 0 1].

• If obj contains lines from a port-configurable device, then all lines will be written to
even if they are not contained by the device object.

• An error will be returned if data is written to an input line.
• An error is returned if you attempt to write a negative value.
• If a decimal value is written to a digital I/O object and the value is too large to be

represented by the hardware, then an error is returned.

Note: Refer to the “Hardware Limitations by Vendor” section before you access National
Instruments devices with the NI-DAQmx adaptor simultaneously from multiple
applications.

4 Functions — Alphabetical List

4-110

save
Save device objects to MAT-file

Syntax

save file

save file obj1 obj2...

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

file The MAT-file name.
obj1 obj2... One or more device objects or an array of device objects.

Description

save file saves all the MATLAB variables to the MAT-file file. If an extension is not
specified for file, then a .MAT extension is used.

save file obj1 obj2... saves the specified device objects to file.

More About

Tips

Saving device objects follows these rules:

• You can use save in the functional form as well as the command form shown above.
When using the functional form, you must specify the filename and device objects as
strings.

 save

4-111

• Samples associated with a device object are not stored in the MAT-file. You can bring
these samples into the MATLAB workspace with the getdata function, and then
save them to the MAT-file using a separate variable name. You can also log samples
to disk by configuring the LoggingMode property to Disk or Disk&Memory.

• Values for read-only properties are restored to their default values upon loading. For
example, the EventLog property is restored to an empty vector. Use the propinfo
function to determine if a property is read only.

• Values for the BufferingConfig property (if the BufferingMode property is set to
Auto) and the MaxSamplesQueued property might not be restored because both these
property values are based on available memory.

If you use the help command to display the help for save, then you must supply this
pathname:

help daq/private/save

See Also
getdata | load | propinfo

4 Functions — Alphabetical List

4-112

set
Configure or display device object properties

Syntax

set(obj)

props = set(obj)

set(obj,'PropertyName')

props = set(obj,'PropertyName')

set(obj,'PropertyName',PropertyValue,...)

set(obj,PN,PV)

set(obj,S)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object, array of device objects, channels, or lines.
'PropertyName' A property name.
PropertyValue A property value.
PN A cell array of property names.
PV A cell array of property values.
S A structure whose field names are device object, channel, or line

properties.
props A structure array whose field names are the property names for

obj, or a cell array of possible values.

Description

set(obj) displays all configurable properties for obj. If a property has a finite list of
possible string values, then these values are also displayed.

 set

4-113

props = set(obj) returns all configurable properties to props. props is a structure
array with fields given by the property names, and possible property values contained in
cell arrays. if the property does not have a finite set of possible values, then the cell array
is empty.

set(obj,'PropertyName') displays the valid values for the property specified by
PropertyName. PropertyName must have a finite set of possible values.

props = set(obj,'PropertyName') returns the valid values for PropertyName to
props. props is a cell array of possible values or an empty cell array if the property does
not have a finite set of possible values.

set(obj,'PropertyName',PropertyValue,...) sets multiple property values with
a single statement. Note that you can use structures, property name/property value
string pairs, and property name/property value cell array pairs in the same call to set.

set(obj,PN,PV) sets the properties specified in the cell array of strings PN to the
corresponding values in the cell array PV. PN must be a vector. PV can be m-by-n where m
is equal to the specified number of device objects, channels, or lines and n is equal to the
length of PN.

set(obj,S) where S is a structure whose field names are device object properties, sets
the properties named in each field name with the values contained in the structure.

Examples

Create the analog input object ai for a sound card and configure it to operate in stereo
mode.

ai = analoginput('winsound');

addchannel(ai,1:2);

To set the value for the SampleRate property to 10000:

ai.SampleRate = 10000

The following two commands set the value for the SampleRate and InputType
properties using one call to set.

ai.SampleRate = 10000

ai.TriggerType = Manual

4 Functions — Alphabetical List

4-114

ai.SampleRate = 10000

ai.TriggerType = Manual

More About

Tips

If you use the help command to display the help for set, then you must supply the
pathname shown below.

help daq/daqdevice/set

See Also
get | setverify

 setverify

4-115

setverify
Configure and return specified property

Syntax

Actual = setverify(obj,'PropertyName',PropertyValue)

Actual = setverify(obj,Channel(index),'PropertyName',PropertyValue)

Actual = setverify(obj,Line(index),'PropertyName',PropertyValue)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
'PropertyName' A property name.
PropertyValue A property value.
Channel(obj,index) One or more channels contained by obj.
Line(obj,index) One or more lines contained by obj.
Actual The actual value for the specified property.

Description

Actual = setverify(obj,'PropertyName',PropertyValue) sets PropertyName
to PropertyValue for obj, and returns the actual property value to Actual.

Actual = setverify(obj,Channel(index),'PropertyName',PropertyValue)

sets PropertyName to PropertyValue for the channels specified by index, and returns
the actual property value to Actual.

Actual = setverify(obj,Line(index),'PropertyName',PropertyValue) sets
PropertyName to PropertyValue for the lines specified by index, and returns the
actual property value to Actual.

4 Functions — Alphabetical List

4-116

Examples

Create the analog input object ai for a National Instruments AT-MIO-16DE-10
board, add eight hardware channels to it, and set the sample rate to 10,000 Hz using
setverify.

ai = analoginput('nidaq','Dev1');

ch = addchannel(ai,0:7);

ActualRate = setverify(ai,'SampleRate',10000);

Suppose you use setverify to set the input range for all channels contained by ai to -8
to 8 volts.
ActualInputRange = setverify(ai.Channel,'InputRange',[-8 8]);

The InputRange value was actually rounded up to -10 to 10 volts.

ActualInputRange{1}

ans =

 -10 10

More About

Tips

setverify is equivalent to the commands

obj.PropertyName = PropertyValue

Actual = obj.PropertyName

Using setverify is not required for setting property values, but it does provide a
convenient way to verify the actual property value set by the data acquisition engine.

setverify is particularly useful when setting the SampleRate, InputRange, and
OutputRange properties because these properties can only be set to specific values
accepted by the hardware. You can use the propinfo function to obtain information
about the valid values for these properties.

If a property value is specified but does not match a valid value, then

• If the specified value is within the range of supported values,

 setverify

4-117

• For the SampleRate and InputRange properties, the value is automatically
rounded up to the next highest supported value.

• For all other properties, the value is automatically selected to be the nearest
supported value.

• If the value is not within the range of supported values, an error is returned and the
current property value remains unchanged.

See Also
get | propinfo | set | InputRange | OutputRange | SampleRate

4 Functions — Alphabetical List

4-118

showdaqevents
Analog input and output event log information

Syntax

showdaqevents(obj)

showdaqevents(obj,index)

showdaqevents(struct)

showdaqevents(struct,index)

out = showdaqevents(...)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input or analog output object.
index The event index.
struct An event structure.
out A one column cell array of event information.

Description

showdaqevents(obj) displays a summary of the event log for obj.

showdaqevents(obj,index) displays a summary of the events specified by index for
obj.

showdaqevents(struct) displays a summary of the events stored in the structure
struct.

showdaqevents(struct,index) displays a summary of the events specified by index
stored in the structure struct.

 showdaqevents

4-119

out = showdaqevents(...) outputs the event information to a one column cell array
out. Each element of out is a string that contains the event information associated with
that index value.

Examples

Create the analog input object ai for a sound card, add two channels, and configure ai to
execute three triggers.

ai = analoginput('winsound');

ch = addchannel(ai,1:2);

ai.TriggerRepeat = 2

Start ai and display the trigger event information with showdaqevents.

start(ai)

showdaqevents(ai,2:4)

 2 Trigger#1 (17:07:06, 0) Channel: N/A

 3 Trigger#2 (17:07:07, 8000) Channel: N/A

 4 Trigger#3 (17:07:08, 16000) Channel: N/A

More About

Tips

You can pass a structure of event information to showdaqevents. This structure can be
obtained from the getdata function, the daqread function, or the EventLog property.

As shown below, you can also display event information via the Workspace browser by
right-clicking a device object and selecting Explore > Show DAQ Events from the
context menu.

4 Functions — Alphabetical List

4-120

See Also
daqread | getdata | EventLog

 size

4-121

size

Size of device object, channel group, or line group

Syntax

d = size(obj)

[m1,m2,m3,...,mn] = size(obj)

m = size(obj,dim)

d = size(obj,Channel)

[m1,m2,m3,...,mn] = size(obj,Channel)

m = size(obj,Channel,dim)

d = size(obj.Line)

[m1,m2,m3,...,mn] = size(obj.Line)

m = size(obj.Line,dim)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or array of device objects.
dim The dimension.
Channel(obj) The channels contained by obj.
Line(obj) The lines contained by obj.
d A two-element row vector containing the number of rows

and columns in obj.
m1,m2,m3,...,mn Each dimension of obj is captured in a separate variable.
m The length of the dimension specified by dim.

4 Functions — Alphabetical List

4-122

Description

d = size(obj) returns the two-element row vector d = [m,n] containing the number
of rows and columns in obj.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions of obj
to separate output variables. For example, [m,n] = size(obj) returns the number of
rows to m and the number of columns to n.

m = size(obj,dim) returns the length of the dimension specified by the scalar dim.
For example, size(obj,1) returns the number of rows.

d = size(obj,Channel) returns the two-element row vector d = [m,n] containing
the number of rows and columns in the channel group Channel(obj).

[m1,m2,m3,...,mn] = size(obj,Channel) returns the length of the first n
dimensions of the channel group Channel(obj) to separate output variables. For
example, [m,n] = size(obj,Channel) returns the number of rows to m and the
number of columns to n.

m = size(obj,Channel,dim) returns the length of the dimension specified by the
scalar dim. For example, size(obj,Channel,1) returns the number of rows.

d = size(obj.Line) returns the two-element row vector d = [m,n] containing the
number of rows and columns in the line group obj.Line.

[m1,m2,m3,...,mn] = size(obj.Line) returns the length of the first n dimensions
of the line group obj.Line to separate output variables. For example, [m,n] =
size(obj.Line) returns the number of rows to m and the number of columns to n.

m = size(obj.Line,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj.Line,1) returns the number of rows.

Examples

Create the analog input object ai for a National Instruments board and add eight
channels to it.

ai = analoginput('nidaq','Dev1');

ch = addchannel(ai,0:7);

 size

4-123

To find the size of the device object:

size(ai)

ans =

 1 1

To find the size of the channel group:

size(ch)

ans =

 8 1

See Also
length

4 Functions — Alphabetical List

4-124

softscope

Open data acquisition oscilloscope

Syntax

softscope

softscope(obj)

softscope('fname.si')

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input object.
fname.si Name of the file containing Oscilloscope settings.

Description

softscope opens the Hardware Configuration graphical user interface (GUI), which
allows you to configure the hardware device to be used with the Oscilloscope. The
Oscilloscope opens when you click the OK button, and at least one hardware channel is
selected.

softscope(obj) opens the Oscilloscope configured to display the data acquired from
the analog input object, obj. obj must contain at least one hardware channel.

softscope('fname.si') pens the Oscilloscope using the settings saved in the
softscope file specified by fname. fname is generated from the Oscilloscope's File > Save
or File > Save As menu item.

 softscope

4-125

More About

Tips

The Oscilloscope is a graphical user interface (GUI) that allows you to

• Stream acquired data into a display.
• Scale displayed data, and configure triggers and measurements.
• Configure analog input hardware settings.
• Export measurements and acquired data.

To support these tasks, the Oscilloscope includes several helper GUIs, which are
described below.

Hardware Configuration

The Hardware Configuration GUI allows you to add channels from a particular hardware
device to the Oscilloscope GUI. You can configure the device's sample rate and input
type, as well as the input range for each added channel. The GUI shown below is
configured to add both sound card channels using the default sample rate.

Oscilloscope

The Oscilloscope GUI consists of these panes:

4 Functions — Alphabetical List

4-126

• Display pane — The display pane contains the hardware channel data (a trace) and
the measurements, if defined. The display area also contains labels for each channel's
horizontal and vertical units, and indicators for

• Each trace
• The trigger level (if defined)
• The location of the start of the trigger (used for pretriggers)

• Channel pane — The channel pane lists the hardware channels, math channels, and
reference channels that are currently being viewed in a display. The Channel Panel
also contains knobs for configuring

• The display's horizontal offset and horizontal scale
• The selected channel's vertical offset and vertical scale

• Trigger pane — The trigger pane allows you to define how data acquisition is
initiated. There are three trigger types:

• One-shot — Acquire the specified number of samples once.
• Continuous — Continuously acquire the specified number of samples.
• Sequence — Continuously acquire the specified number of samples, and use the

dependent trigger type each time.

For each trigger type, the Oscilloscope begins to acquire data after you press the
Trigger button.

• Measurement pane — The measurement pane lists all measurements that are
currently being taken. When defining a measurement, you must specify

• The hardware, math, or reference channel
• The measurement type
• Whether the measurement result is drawn as a cursor in the display

The Oscilloscope GUI shown below is configured to display the sound card channels in
separate displays.

 softscope

4-127

Channel Exporter

The Channel Exporter allows you to export the data associated with a hardware channel,
a math channel, or a reference channel. You can export the channel data to one of four
destinations:

• The MATLAB workspace as an array
• The MATLAB workspace as a structure
• A MATLAB figure window
• A MAT-file

All channels added to the oscilloscope are listed in the GUI.

4 Functions — Alphabetical List

4-128

Measurement Exporter

The Measurement Exporter allows you to export the data associated with a
measurement. You can export the measurement to one of three destinations:

• The MATLAB workspace
• A MATLAB figure window
• A MAT-file

The number of measurements exported depends on the BufferSize property value.
By default, BufferSize is 1 indicating that the last measurement value calculated is
available to export.

 softscope

4-129

Scope Editor

The Scope Editor consists of two panes:

• Scope — Add and remove displays, the channel pane, the measurement pane, and
the trigger pane. Note that you can define as many displays as you want, but there
can only be only one channel pane, measurement pane, and trigger pane in the
Oscilloscope at a time.

• Scope Properties — Configure properties for the displays, the channel pane, the
measurement pane, and the trigger pane.

Channel Editor

The Channel Editor consists of three panes:

• Channel — Add or delete math channels and reference channels, and select which
defined channels are available to the Oscilloscope.

• Channel Properties — Configure properties for defined hardware channels, math
channels, and reference channels.

• Channel Display — Select the Oscilloscope display for each defined channel, or
choose to not display a channel.

4 Functions — Alphabetical List

4-130

Measurement Editor

The Measurement Editor consists of three panes:

• Measurement — Add or delete measurements, and select which defined
measurements are available to the Oscilloscope.

• Measurement Properties — Configure properties for the defined measurements.
• Measurement Type — Add or delete measurement types, and select which defined

measurement types are available to the Oscilloscope.

 softscope

4-131

4 Functions — Alphabetical List

4-132

start
Start device object

Syntax

start(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or an array of device objects.

Description

start(obj) initiates the execution of the device object obj.

More About

Tips

When start is issued for an analog input or analog output object,

• The callback function specified for StartFcn is executed.
• The Running property is set to On.
• The start event is recorded in the EventLog property.
• Data existing in the engine is flushed.

Although an analog input or analog output object might be executing, data logging or
sending is not necessarily initiated. Data logging or sending requires a trigger event to
occur, and depends on the TriggerType property value.

 start

4-133

For any device object, you can specify start as the value for a callback property.

ai.StopFcn = @start;

Note You typically execute a digital I/O object to periodically update and display its
state. Refer to the diopanel example to see this behavior.

If you want to synchronize the input and output of data, or you require more control over
when your hardware starts, you should use the ManualTriggerHwOn property.

See Also
stop | trigger | EventLog | ManualTriggerHwOn | Running | Sending |
TriggerType

4 Functions — Alphabetical List

4-134

stop
Stop device object

Syntax

stop(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or an array of device objects.

Description

stop(obj) terminates the execution of the device object obj.

More About

Tips

An analog input object automatically stops when the requested samples are acquired
or data is missed. An analog output object automatically stops when the queued data is
output. These two device objects can also stop executing under one of these conditions:

• The Timeout property value is reached.
• A run-time error occurs.

For analog input objects, stop must be used when the TriggerRepeat property or
SamplesPerTrigger property is set to inf. For analog output objects, stop must be
used when the RepeatOutput property is set to inf. When stop is issued for either of
these device objects,

 stop

4-135

• The Running property is set to Off.
• The Logging property or Sending property is set to Off.
• The callback function specified for StopFcn is executed.
• The stop event is recorded in the EventLog property.
• All pending callbacks for this object are discarded.

For any device object, you can specify stop as the value for a callback property.

ao.TimerFcn = @stop;

Note Issuing stop is the only way to stop an executing digital I/O object. You typically
execute a digital I/O object to periodically update and display its state. Refer to the
diopanel example.

See Also
start | trigger | EventLog | Logging | RepeatOutput | Sending | Timeout |
Running | SamplesPerTrigger | TriggerRepeat

4 Functions — Alphabetical List

4-136

trigger

Manually execute trigger for analog input or output object

Syntax

trigger(obj)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj An analog input or analog output object or an array of these device
objects.

Description

trigger(obj) manually executes a trigger.

More About

Tips

After trigger is issued,

• The absolute time of the trigger event is recorded by the InitialTriggerTime
property.

• The Logging property or Sending property is set to On.
• The callback function specified by TriggerFcn is executed.
• The trigger event is recorded in the EventLog property.

 trigger

4-137

You can issue trigger only if TriggerType is set to Manual, Running is On, and
Logging is Off.

See Also
start | stop | InitialTriggerTime | Logging | Running | Sending |
TriggerFcn | TriggerType

4 Functions — Alphabetical List

4-138

wait
Wait until analog input or output device object stops running

Syntax

wait(obj,waittime)

Note: You cannot use the legacy interface on 64-bit MATLAB. See “Working with the
Session-Based Interface” to acquire and generate data on a 64-bit MATLAB.

Arguments

obj A device object or an array of device objects.
waittime The maximum time to wait for obj to stop running.

Description

wait(obj,waittime) blocks the MATLAB Command Window, and waits for obj
to stop running. You specify the maximum waiting time, in seconds, with waittime.
waittime overrides the value specified for the Timeout property. If obj is an array of
device objects, then wait might wait up to the specified time for each device object in the
array.

wait is particularly useful if you want to guarantee that the specified data is acquired
before another task is performed.

Examples

Create the analog input object ai for a National Instruments board, add eight channels
to it, and configure a 25-second acquisition.

ai = analoginput('nidaq','Dev1');

 wait

4-139

ch = addchannel(ai,0:7);

ai.SampleRate = 2000;

ai.TriggerRepeat = 4;

ai.SamplesPerTrigger = 10000;

You can use wait to block the MATLAB Command Window until all the requested
data is acquired. Because the expected acquisition time is 25 seconds, the waittime
argument is 26. If the acquisition does not complete within this time, then a timeout
occurs.

start(ai)

wait(ai,26)

More About

Tips

If obj is not running when wait is issued, or if an error occurs while obj is running,
then wait immediately relinquishes control of the Command Window.

When obj stops running, its Running property is automatically set to Off. obj can stop
running under one of these conditions:

• The requested number of samples is acquired (analog input) or sent out (analog
output).

• The stop function is issued on that object.
• A run-time error occurs.
• The Timeout property value is reached (waittime supersedes this value).

All callbacks, including the StopFcn, are executed before wait returns.

See Also
EventLog | Running | StopFcn | Timeout

4 Functions — Alphabetical List

4-140

daq.createSession

Create data acquisition session for specific vendor hardware

Syntax

session = daq.createSession(vendor)

Description

session = daq.createSession(vendor) creates a session object that you can
configure to perform operations using a CompactDAQ device.

Input Arguments

vendor — Vendor name
character string

Vendor name for the device you want to create a session for, specified as a string. Valid
vendors are:

• ni

• digilent

• directsound

Output Arguments

session — Session object
character string

Session object created using daq.createSession, specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

 daq.createSession

4-141

Properties

Session acquisition and generation properties:

Examples

Create a session object s:
s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

More About
• “Session-Based Interface”

See Also
| addAnalogInputChannel | addAnalogOutputChannel | addDigitalChannel |
addAudioInputChannel | addAudioOutputChannel | addCounterInputChannel |
addCounterOutputChannel | daq.getDevices | daq.getVendors

4 Functions — Alphabetical List

4-142

daq.getDevices
Display available National Instruments devices

Syntax
daq.getDevices

device = daq.getDevices

Description
daq.getDevices lists devices available to your system.

device = daq.getDevices stores this list in the variable device.

Output Arguments

device — Device list handle
character string

Device list handle variable that you want to store a list of devices available to your
system, specified as a string.

Examples

Get a list of devices

Get a list of all devices available to your system and store it in the variable d.

 d = daq.getDevices

d =

index Vendor Device ID Description

----- ----------- --------- ---

1 directsound Audio0 DirectSound Primary Sound Capture Driver

2 directsound Audio1 DirectSound Digital Audio (S/PDIF) (High Definition Audio Device)

3 directsound Audio3 DirectSound HP 4120 (2- HP 4120)

 daq.getDevices

4-143

4 ni cDAQ1Mod1 National Instruments NI 9205

5 ni cDAQ1Mod2 National Instruments NI 9263

6 ni cDAQ1Mod3 National Instruments NI 9234

7 ni cDAQ2Mod1 National Instruments NI 9402

8 ni cDAQ2Mod2 National Instruments NI 9205

9 ni cDAQ2Mod3 National Instruments NI 9375

10 ni Dev1 National Instruments USB-6211

11 ni Dev2 National Instruments USB-6218

12 ni Dev3 National Instruments PCI-6255

13 ni PXI1Slot2 National Instruments PXI-4461

14 ni PXI1Slot3 National Instruments PXI-4461

To get detailed information about a module on the chassis, type d(index). For example,
to get information about NI 9265, which has the index 13, type:
 d(13)

ans =

ni: National Instruments NI 9402 (Device ID: 'cDAQ1Mod5')

 Counter input subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 4 channels ('ctr0','ctr1','ctr2','ctr3')

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 4 channels ('ctr0','ctr1','ctr2','ctr3')

 'PulseGeneration' measurement type

This module is in slot 5 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

You can also click on the name of the device in the list. You can now access detailed
device information which includes:

• subsystem type
• rate
• number of available channels
• measurement type

More About

Tips

Devices not supported by the toolbox are denoted with an *. For a complete list of
supported CompactDAQ devices, see the Supported Hardware page in the Data
Acquisition Toolbox area of the MathWorks Web site.

http://www.mathworks.com/products/daq/supportedio.html

4 Functions — Alphabetical List

4-144

• “Session-Based Interface”

See Also
| daq.getVendors | daq.createSession

 daq.getVendors

4-145

daq.getVendors
Display available vendors

Syntax

daq.getVendors

vendor = daq.getVendors

Description

daq.getVendors lists vendors available to your machine and MATLAB.

vendor = daq.getVendors stores this list in the variable vendor.

Output Arguments

vendor — Vendor information
character string

Vendor information available to your system, stored in a variable.

Data Acquisition Toolbox currently supports

• National Instruments, including CompactDAQ devices, denoted with the abbreviation
'ni'.

• Digilent Analog Discovery™ devices denoted with 'digilent'. To use this device use
the Support Package Installer to download necessary drivers. For more information
see “Digilent Analog Discovery Devices”.

• DirectSound Windows sound cards. To use devices with DirectSound sound cards use
the Support Package Installer to download necessary drivers. For more information
see “Multichannel Audio Input and Output”.

Examples

4 Functions — Alphabetical List

4-146

Get a list of vendors

Get a list of all vendors available to your machine and MATLAB and store it in the
variable v.

v = daq.getVendors

v =

Number of vendors: 3

index ID Operational Comment

----- ----------- ----------- --------------------

1 digilent true Digilent Inc.

2 ni true National Instruments

3 directsound true DirectSound

Properties, Methods, Events

Additional data acquisition vendors may be available as downloadable support packages.

Open the Support Package Installer to install additional vendors.

More About
• “Session-Based Interface”

See Also
| daq.getDevices | daq.createSession

 addAnalogInputChannel

4-147

addAnalogInputChannel
Add analog input channel

Syntax

addAnalogInputChannel(s,deviceID,channelID,measurementType)

ch = addAnalogInputChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addAnalogInputChannel(s,deviceID,channelID,

measurementType)

Description

addAnalogInputChannel(s,deviceID,channelID,measurementType) adds
a channel on the device represented by deviceID, with the specified channelID,
and channel measurement type, represented by measurementType, to the session s.
Measurement types are vendor specific.

ch = addAnalogInputChannel(s,deviceID,channelID,measurementType)

creates and displays the object ch.

[ch,idx] = addAnalogInputChannel(s,deviceID,channelID,

measurementType) creates and displays the object ch, representing the channel that
was added and the index, idx, which is an index into the array of the session object's
Channels property.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

deviceID — Device ID
character string

4 Functions — Alphabetical List

4-148

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType — Channel measurement type
character string

Channel measurement type specified as a string. measurementType represents a
vendor-defined measurement type. Measurement types include:

• 'Voltage'

• 'Thermocouple'

• 'Current'

• 'Accelerometer'

• 'RTD'

• 'Bridge'

• 'Microphone'

• 'IEPE'

• 'Audio'

Output Arguments

ch — Analog input channel object
1xn array

Analog input channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

 addAnalogInputChannel

4-149

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add an analog input current channel

s = daq.createSession('ni')

addAnalogInputChannel(s,'cDAQ1Mod3','ai0', 'Current');

Create analog input channel and index objects

s = daq.createSession('ni')

[ch, idx] = addAnalogInputChannel(s,'cDAQ2Mod6', 'ai0', 'Thermocouple')

Add a range of analog input channels

s = daq.createSession('ni')

ch = addAnalogInputChannel(s,'cDAQ1Mod1',[0 2 4], 'Voltage');

More About

Tips

• Use daq.createSession to create a session object before you use this method.
• To use counter channels, see addCounterInputChannel.

• “Session-Based Interface”

See Also
daq.createSession | startBackground | startForeground | inputSingleScan
| addAnalogOutputChannel | removeChannel

4 Functions — Alphabetical List

4-150

addAnalogOutputChannel

Add analog output channel

Syntax

addAnalogOutputChannel(s,channelID,measurementType)

ch = addAnalogOutputChannel(s,channelID,measurementType)

[ch,idx] = addAnalogOutputChannel(s,channelID,measurementType)

Description

addAnalogOutputChannel(s,channelID,measurementType) adds an analog output
channel on the device represented by deviceID, with the specified channelID, and
channel measurement type, defined by measurementType, on the session object, s.
Measurement types are vendor specific.

ch = addAnalogOutputChannel(s,channelID,measurementType) creates and
displays the object ch, representing the channel that was added.

[ch,idx] = addAnalogOutputChannel(s,channelID,measurementType) creates
and displays the object ch, representing the channel that was added and the object idx,
representing the index into the array of the session object’s Channels property.

Tips

• Use daq.createSession to create a session object before you use this method.

• To use counter channels, see addCounterInputChannel.

Input Arguments

s — Session object
character string

 addAnalogOutputChannel

4-151

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

deviceName — Device ID
character string

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType — Channel measurement type
character string

Channel measurement type specified as a string. measurementType represents a
vendor-defined measurement type. Measurement types include:

• 'Voltage'

• 'Current'

Output Arguments

ch — Analog output channel object
1xn array

Analog output channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric

4 Functions — Alphabetical List

4-152

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add an analog output voltage channel

s = daq.createSession('ni')

addAnalogOutputChannel(s,'cDAQ1Mod2','ao0', 'Voltage');

Create analog output channel and index objects

s = daq.createSession('ni')

[ch,idx] = addAnalogOutputChannel(s,'cDAQ1Mod2','ao0', 'Voltage');

Add a range of analog output channels

s = daq.createSession('ni')

ch = addAnalogOutputChannel(s,'cDAQ1Mod8',0:3, 'Current');

More About
• “Session-Based Interface”

See Also
daq.createSession | startBackground | startForeground |
outputSingleScan | addAnalogInputChannel | removeChannel

 removeChannel

4-153

removeChannel
Remove channel from session object

Syntax

removeChannel(s,idx);

Description

removeChannel(s,idx); removes the channel specified by idx from the session object
s.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

idx — Index of channel
numeric

Channel index, specified as a numeric value. Use the index of the channel that you wan
to remove from the session.

Examples

Remove Channels From a Session

Start with a session s, with two analog input and two analog output voltage channels
and display channel information.

s

4 Functions — Alphabetical List

4-154

s =

Data acquisition session using National Instruments hardware:

 No data queued. Will run at 1000 scans/second.

 Operation starts immediately.

 Number of channels: 4

 index Type Device Channel InputType Range Name

 ----- ---- --------- ------- --------- ---------------- ----

 1 ai cDAQ1Mod4 ai0 SingleEnd -10 to +10 Volts

 2 ai cDAQ1Mod4 ai1 SingleEnd -10 to +10 Volts

 3 ao cDAQ1Mod2 ao0 n/a -10 to +10 Volts

 4 ao cDAQ1Mod2 ao1 n/a -10 to +10 Volts

Remove channel 'ai0' currently with the index 1 from the session:

removeChannel(s,1)

To see how the indexes shift after you remove a channel, type:
s

s =

Data acquisition session using National Instruments hardware:

 No data queued. Will run at 1000 scans/second.

 All devices synchronized using cDAQ1 CompactDAQ chassis backplane. (Details)

 Number of channels: 3

 index Type Device Channel InputType Range Name

 ----- ---- --------- ------- --------- ---------------- ----

 1 ai cDAQ1Mod4 ai1 SingleEnd -10 to +10 Volts

 2 ao cDAQ1Mod2 ao0 n/a -10 to +10 Volts

 3 ao cDAQ1Mod2 ao1 n/a -10 to +10 Volts

Remove the first output channel 'ao0' currently at index 2:

removeChannel(s,2)

The session displays one input and one output channel:

s.Channels

ans =

Number of channels: 2

 index Type Device Channel InputType Range Name

 ----- ---- --------- ------- --------- ---------------- ----

 1 ai cDAQ1Mod4 ai1 SingleEnd -10 to +10 Volts

 2 ao cDAQ1Mod2 ao1 n/a -10 to +10 Volts

 removeChannel

4-155

See Also
addAnalogInputChannel | addAnalogOutputChannel | addDigitalChannel
| addCounterInputChannel | addCounterOutputChannel |
addAudioInputChannel | addAudioOutputChannel

4 Functions — Alphabetical List

4-156

startBackground
Start background operations

Syntax

startBackground(s);

Description

startBackground(s); starts the operation of the session object, s, without
blocking MATLAB command line and other code. To block MATLAB execution, use
startForeground.

When you use startBackground(s) with analog input channels, the operation uses
the DataAvailable event to deliver the acquired data. This event is fired periodically
while an acquisition is in progress. For more information, see “Events and Listeners —
Concepts”.

When you add analog output channels to the session, you must call
queueOutputData() before calling startBackground().

During a continuous generation, the DataRequired event is fired periodically to request
additional data to be queued to the session. See DataRequired for more information.

By default, the IsContinuous property is set to false and the operation stops
automatically. If you have set it to true, use stop to stop background operations
explicitly.

Use wait to block MATLAB execution until a background operation is complete.

Tip

• If your session has analog input channels, you must use a DataAvailable event to
receive the acquired data in a background acquisition.

• If your session has analog output channels and is continuous, you can use a
DataRequired event to queue additional data during background generations.

 startBackground

4-157

• Create an acquisition session and add a channel before you use this method. See
daq.createSession for more information.

• Call prepare to reduce the latency associated with startup and to preallocate
resources.

• Use an ErrorOccurred event to display errors during an operation.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

Examples

Acquire Data in the Background

Create a session and adding a listener to access the acquired data using a callback
function.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');

lh = addlistener(s,'DataAvailable', @plotData);

function plotData(src,event)

 plot(event.TimeStamps, event.Data)

end

Start the session and perform other MATLAB operations.

startBackground(s);

Perform other MATLAB operations.

Generate Data Continuously

For a continuous background generation, add a listener event to queue additional data to
be output.

4 Functions — Alphabetical List

4-158

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2', 0, 'Voltage');

s.IsContinuous = true;

s.Rate=10000;

data=linspace(-1, 1, 5000)';

lh = addlistener(s,'DataRequired', ...

 @(src,event) src.queueOutputData(data));

queueOutputData(s,data)

startBackground(s);

Perform other MATLAB operations during the generation.

• “Acquire Data in the Background”
• “Generate Signals in the Background”
• “Generate Signals in the Background Continuously”

See Also
addAnalogInputChannel | addAnalogOutputChannel | addAudioInputChannel
| addDigitalChannel | addlistener | daq.createSession | DataAvailable |
DataRequired | ErrorOccurred | startForeground

 startForeground

4-159

startForeground
Start foreground operations

Syntax

startForeground(s);

data = startForeground(s);

[data,timeStamps,triggerTime] = startForeground(s);

Description

startForeground(s); starts operations of the session object, s, and blocks MATLAB
command line and other code until the session operation is complete.

data = startForeground(s); returns the data acquired in the output parameter,
data.

[data,timeStamps,triggerTime] = startForeground(s); returns the data
acquired, timestamps relative to the time the operation is triggered, and a trigger time
indicating the absolute time the operation was triggered.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

Output Arguments

data — Value from acquired data
numeric array

4 Functions — Alphabetical List

4-160

Value from acquired data, returned as a mxn array of doubles. m is the number of scans
acquired, and n is the number of input channels in the session.

timeStamps — Recorded time stamp
numeric

Recorded time stamp relative to the time the operation is triggered in an mx1 array
where m is the number of scans.

triggerTime — Time stamp of acquired data
numeric

Time stamp of acquired data which is a MATLAB serial date time stamp representing
the absolute time when timeStamps = 0.

Examples

Acquire Analog Data

Acquire data by creating a session with an analog input channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Start the acquisition and save the acquired data into the variable data:

 data = startForeground(s);

Generate Analog Data

Generate a signal by creating a session with an analog output channel.

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage')

Create and queue an output signal and start the generation:

outputSignal = linspace(-1,1,1000)';

queueOutputData(s,outputSignal);

startForeground(s);

Acquire Analog Input Data and Time Stamps

s = daq.createSession('ni');

 startForeground

4-161

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Start the acquisition and save the acquired data in the variable data, the acquisition
time stamp in timestamps and the trigger time in triggerTime:

 [data,timestamps,triggerTime] = startForeground(s);

• “Acquire Data in the Foreground”
• “Generate Data on a Counter Channel”

More About
• “Session-Based Interface and Data Acquisition Toolbox”

See Also
addAnalogInputChannel | addAnalogOutputChannel | addDigitalChannel |
daq.createSession | startBackground

4 Functions — Alphabetical List

4-162

addlistener
Create event listener

Syntax

lh = addlistener(eventName,@callback)

lh = addlistener(eventName, @(src, event) expr)

Description

lh = addlistener(eventName,@callback) creates a listener for the specified event,
eventName, and fires the callback function, callback. lh is the variable in which the
listener handle is stored. Create a callback function that executes when the listener
detects the specified event. The callback can be any MATLAB function.

lh = addlistener(eventName, @(src, event) expr) creates a listener for the
specified event, eventName, and fires an anonymous callback function. The anonymous
function uses the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without storing them to a file. For more information, see “Anonymous
Functions”.

Tip You must delete the listener once the operation is complete.

delete (lh)

Input Arguments

eventName — Event name
character string

Name of the event to listen for, specified as a string. Available events include:

• DataAvailable

 addlistener

4-163

• DataRequired

• ErrorOccurred

callback — Callback function name
character string

Name of the function to execute when the specified event occurs, specified as a string.

src — Session object
character string

The session object, where the event occurred, specified as a string.

event — Event object
character string

Event object, specified as a string.

expr — Body of function

Expression that represents the body of the function.

Output Arguments

lh — Listener event handle
character string

Handle to the event listener returned by addlistener, specified as a string. Delete the
listener once the operation completes.

Examples

Add a listener to an acquisition session

Creating a session and add an analog input channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');

Add a listener for the DataAvailable event:

4 Functions — Alphabetical List

4-164

lh = addlistener(s,'DataAvailable', @plotData);

Create the plotData callback function and save it as plotData.m:

function plotData(src,event)

 plot(event.TimeStamps, event.Data)

end

Acquire data in the background:

startBackground(s);

Wait for the operation to complete and delete the listener:

delete (lh)

Add a listener using an anonymous function to a signal generation

Create a session and set the IsContinuous property to true.

s = daq.createSession('ni');

s.IsContinuous = true;

Add two analog output channel and create output data for the two channels.

addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage');

outputData0 = linspace(-1, 1, 1000)';

outputData1 = linspace(-2, 2, 1000)';

Queue the output data.

queueOutputData(s,[outputData0 outputData1]);

Add an anonymous listener and generate the signal in the background.

lh = addlistener(s,'DataRequired', @(src,event)...

 src.queueOutputData([outputData0 outputData1]));

Generate signals in the background.

startBackground(s);

Perform other MATLAB operations, and then stop the session.

stop(s)

 addlistener

4-165

Delete the listener:

delete(lh)

More About
• “Working with the Session-Based Interface”

See Also
daq.createSession | addAnalogInputChannel | addAnalogOutputChannel |
startBackground | DataAvailable | DataRequired | ErrorOccurred

4 Functions — Alphabetical List

4-166

prepare
Prepare session for operation

Syntax

prepare(s)

Description

prepare(s) configures and allocates hardware resources for the session s and reduces
the latency of startBackground and startForeground functions. This function is
optional and is automatically called as needed.

Inputs

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

See Also
addAnalogInputChannel | addAnalogInputChannel | release

 wait

4-167

wait

Block MATLAB until background operation completes

Syntax

wait(s)

wait(s,timeout)

Description

wait(s) blocks MATLAB until the background operation completes. Press Ctrl+C to
abort the wait.

wait(s,timeout) blocks MATLAB until the operation completes or the specified time-
out occurs.

Tips

• You cannot call wait if you have set the session's IsContinuous property to true.

• To terminate the operation, use stop.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

timeout — Session timeout value
numeric

4 Functions — Alphabetical List

4-168

Session timeout value, or the maximum time in seconds before the wait throws an error,
specified as a number.

Examples

Wait to acquire data

Create a session and add an analog output channel.

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao0', 'Voltage');

Queue some output data.

queueOutputData(s,zeros(10000,1));

Start the session and issue a wait. This blocks MATLAB for all data is output.

startBackground(s);

% perform other MATLAB operations.

wait(s)

Queue more data and wait for up to 15 seconds.

queueOutputData(s,zeros(10000,1));

startBackground(s);

% perform other MATLAB operations.

wait(s,15);

See Also
startBackground | stop

 stop

4-169

stop
Stop background operation

Syntax

stop(s);

Description

stop(s); stops the session and all associated hardware operations in progress. If your
operation has acquired data and the DataAvailable event has not yet fired, the stop
command will fire the event and deliver the data acquired up to that point.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

See Also
startBackground | wait | startForeground

4 Functions — Alphabetical List

4-170

release
Release session resources

Syntax
release(s)

Description
release(s) releases all reserved hardware resources.

When you associate hardware with a session using the Data Acquisition Toolbox, the
session reserves exclusive access to the data acquisition hardware.

Hardware resources associated with a session are automatically released when you
delete the session object, or you assign a different value to the variable containing
your session object. Optionally, you can use s.release to release reserved hardware
resources if you need to use it in another session or to use applications other than
MATLAB to access the hardware.

Inputs
s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

Examples

Release session hardware

Create a session and add an analog input voltage channel and acquire data in the
foreground:

 release

4-171

s1 = daq.createSession('ni');

addAnalogInputChannel(s1,'cDAQ3Mod1','ai0','Voltage');

startForeground(s1)

Release the session hardware and create another session object with an analog input
voltage channel on the same device as the previous session. Acquire in the foreground:

release(s1);

s2 = daq.createSession('ni');

addAnalogInputChannel(s2,'cDAQ3Mod1','ai2','Voltage');

startForeground(s2);

See Also
prepare | startForeground | startBackground |

4 Functions — Alphabetical List

4-172

inputSingleScan

Acquire single scan from all input channels

Syntax

data = inputSingleScan(s);

[data,triggerTime] = inputSingleScan(s);

Description

data = inputSingleScan(s); returns an immediately acquired single scan from
each input channel in the session as a 1xn array of doubles. The value is stored in data,
where n is the number of input channels in the session.

[data,triggerTime] = inputSingleScan(s); returns an immediately acquired
single scan from each input channel in the session as a 1xn array of doubles. The
value is stored in data, where n is the number of input channels in the session and the
MATLAB serial date time stamp representing the time the data is acquired is returned
in triggerTime.

Tip To acquire more than a single input, use startForeground.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

 inputSingleScan

4-173

Output Arguments

data — Value from acquired data
numeric array

Value from acquired data, returned as a 1xn array of doubles.

triggerTime — Time stamp of acquired data
numeric

Time stamp of acquired data which is a MATLAB serial date time stamp representing
the absolute time when timeStamps = 0.

Examples

Acquire Single Analog Input Scan

Acquire a single input from an analog channel.

Create a session and add two analog input channels:

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1', 1:2, 'Voltage');

Input a single scan:

 data = inputSingleScan(s)

data =

 -0.1495 0.8643

Acquire Single Digital Input Scan

Acquire a single input from a digital channel and get data and the trigger time of the
acquisition.

Create a session and add two digital channels with InputOnly measurement type:

s = daq.createSession('ni');

addDigitalChannel(s,'dev1', 'Port0/Line0:1', 'InputOnly');

4 Functions — Alphabetical List

4-174

Input a single scan:

 [data,triggerTime] = inputSingleScan(s)

Acquire Single Counter Input Scan

Acquire a single input from a counter channel.

Create a session and add a counter input channel with EdgeCount measurement type:

s = daq.createSession('ni');

addCounterInputChannel(s,'Dev1',0,'EdgeCount');

Input a single edge count:

 data = inputSingleScan(s)

• “Acquire Non-Clocked Digital Data”
• “Acquire Counter Input Data”

See Also
addAnalogInputChannel | addCounterInputChannel | addDigitalChannel |
daq.createSession | startForeground

 queueOutputData

4-175

queueOutputData
Queue data to be output

Syntax

queueOutputData(s,data)

Description

queueOutputData(s,data) queues data to be output. When using analog output
channels, you must queue data before you call startForeground or startBackground.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

data — Data object
doubles

Data object specified as an mxn matrix of doubles where m is the number of scans to
generate, and n is the number of output channels in the session.

Examples

Queue output data for a single channel

Create a session, add an analog output channel, and queue some data to output.

s = daq.createSession('ni');

4 Functions — Alphabetical List

4-176

addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao0', 'Voltage');

queueOutputData(s,linspace(-1, 1, 1000)');

startForeground(s)

Queue output data for multiple channels

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage');

data0 = linspace(-1, 1, 1000)';

data1 = linspace(-2, 2, 1000)';

queueOutputData(s,[data0 data1]);

startBackground(s);

See Also
daq.createSession | | startForeground | addAnalogOutputChannel |
startBackground | startForeground

 outputSingleScan

4-177

outputSingleScan
Generate single scan on all output channels

Syntax

outputSingleScan(s,data)

Description

outputSingleScan(s,data) outputs a single scan of data on one or more analog
output channels.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

data — Data to output
doubles

Data to output, represented as a 1xn matrix of doubles where n is the number of output
channels in the session.

Examples

Analog Output

Output a single scan on two analog output voltage channels

Create a session and add two analog output channels.

4 Functions — Alphabetical List

4-178

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage');

Create an output value and output a single scan for each channel added.

outputSingleScan(s,[1.5 4]);

Digital Output

Output one value each on 2 lines on a digital channel

Create a session and add two digital channels from port 0 that measures output only:

s = daq.createSession('ni');

addDigitalChannel(s,'dev1', 'Port0/Line0:1', 'OutputOnly')

Output one value each on the two lines:

outputSingleScan(s,[0 1])

See Also
daq.createSession | addAnalogOutputChannel | addDigitalChannel |
inputSingleScan

 DataAvailable

4-179

DataAvailable
Notify when acquired data is available to process

Syntax

lh = addlistener(session,'DataAvailable',callback);

lh = addlistener(session,'DataAvailable', @(src, event), expr)

Description

lh = addlistener(session,'DataAvailable',callback); creates a listener for
the DataAvailable event. When data is available to process, the callback is executed.
The callback can be any MATLAB function with the (src, event) signature.

lh = addlistener(session,'DataAvailable', @(src, event), expr) creates
a listener for the DataAvailable event and fires an anonymous callback function.
The anonymous function requires the specified input arguments and executes the
operation specified in the expression expr. Anonymous functions provide a quick means
of creating simple functions without storing your function to a file. For more information
see “Anonymous Functions”.

The callback has two required parameters: src and event. src is the session object
for the listener and event is a daq.DataAvailableInfo object containing the data
associated and timing information. Properties of daq.DataAvailableInfo are:

Data
An mxn matrix of doubles where m is the number of scans acquired, and n is the
number of input channels in the session.

TimeStamps
The timestamps relative to TriggerTime in an mx1 array where m is the number of
scans acquired.

TriggerTime
A MATLAB serial date time stamp representing the absolute time the acquisition
trigger occurs.

4 Functions — Alphabetical List

4-180

Tip Frequency with which the DataAvaialble event is fired, is controlled by
NotifyWhenDataAvailableExceeds

Examples

Create a session, add an analog input channel, and change the duration of the
acquisition:

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');

s.DurationInSeconds=5;

To add a listener for the DataAvailable event to plot the data, type:

lh = addlistener(s,'DataAvailable', @plotData);

Create a function that plots the data when the event occurs:

 function plotData(src,event)

 plot(event.TimeStamps, event.Data)

end

Start the acquisition and wait:

startBackground(s);

wait(s);

Delete the listener:

delete(lh)

See Also
| addlistener | IsNotifyWhenDataAvailableExceedsAuto |
NotifyWhenDataAvailableExceeds | startBackground

Related Examples
• “Acquire Data in the Background”

 DataRequired Event

4-181

DataRequired Event
Notify when additional data is required for output on continuous generation

Syntax

lh = addlistener(session,DataRequired,callback);

lh = addlistener(session,DataRequired,@(src,event),expr);

Description

lh = addlistener(session,DataRequired,callback); creates a listener for the
DataRequired event. When more data is required, the callback is executed. The callback
can be any MATLAB function with the (src, event) signature.

lh = addlistener(session,DataRequired,@(src,event),expr); creates a
listener for the DataRequired event and fires an anonymous function. The anonymous
function requires the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without storing your function to a file. For more information see “Anonymous
Functions”.

The callback has two required parameters, src and event. src is the session object for
the listener and event is a daq.DataRequiredInfo object.

Tips

• The callback is typically used to queue more data to the device.

• Frequency is controlled by NotifyWhenScansQueuedBelow.

Examples

Add an anonymous listener to a signal generation session

Create a session and add two analog output channels.

4 Functions — Alphabetical List

4-182

s = daq.createSession('ni');

s.IsContinuous=true

addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage');

Create output data for the two channels :

outputData0 = (linspace(-1, 1, 1000))';

outputData1 = (linspace(-2, 2, 1000))';

Queue the output data and add an anonymous listener and generate the signal in the
background:
queueOutputData(s,[outputData0, outputData1]);

lh=addlistener(s,'DataRequired', ...

 @(src,event) src.queueOutputData([outputData0, outputData1]));

Generate data and pause for up to 15 seconds:

startBackground(s);

pause(15)

Delete the listener:

delete(lh)

See Also
addlistener | startBackground | IsContinuous | |
NotifyWhenScansQueuedBelow | IsNotifyWhenScansQueuedBelowAuto

 ErrorOccurred Event

4-183

ErrorOccurred Event
Notify when device-related errors occur

Syntax

lh = addlistener(session,'ErrorOccurred', callback);

lh = addlistener(session,'ErrorOccurred',@(src,event)expr);

Description

lh = addlistener(session,'ErrorOccurred', callback); creates a listener for
the ErrorOccurred event. When an error occurs, the call back is executed. The callback
can be any MATLAB function with the (src, event) signature.

lh = addlistener(session,'ErrorOccurred',@(src,event)expr); creates a
listener for the ErrorOccurred event and fires an anonymous function. The anonymous
function requires the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without storing your function to a file. For more information, see “Anonymous
Functions”.

The callback has two required parameters: src and event. src is the session
object for the listener and event is a daq.ErrorOccurredInfo object. The
daq.ErrorOccurredInfo object contains the Error property, which is the
MException associated with the error. You could use the MException.getReport
method to return a formatted message string that uses the same format as errors thrown
by internal MATLAB code.

Examples

Create a session, and add an analog input channel:

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');

To get a formatted report of the error, type:

4 Functions — Alphabetical List

4-184

lh = addlistener(s,'ErrorOccurred' @(src,event), disp(event.Error.getReport()));

Acquire data, wait and delete the listener:

startBackground(s);

wait(s)

delete(lh)

See Also
addlistener | startBackground | MException

 addCounterInputChannel

4-185

addCounterInputChannel
Add counter input channel

Syntax

addCounterInputChannel(s,deviceID,channelID)

ch = addCounterInputChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addCounterInputChannel(s,deviceID,channelID,

measurementType)

Description

addCounterInputChannel(s,deviceID,channelID) adds a counter channel
on the device represented by deviceID with the specified channelID, and channel
measurement type, represented by measurementType, to the session s. Measurement
types are vendor specific.

ch = addCounterInputChannel(s,deviceID,channelID,measurementType)

returns the object ch.

[ch,idx] = addCounterInputChannel(s,deviceID,channelID,

measurementType) returns the object ch, representing the channel that was added
and the index, idx, which is an index into the array of the session object's Channels
property.

Tip Use daq.createSession to create a session object before you use this method.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

4 Functions — Alphabetical List

4-186

deviceID — Device ID
character string

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType — Channel measurement type
character string

Channel measurement type specified as a string. measurementType represents a
vendor-defined measurement type. Measurement types include:

• 'EdgeCount'

• 'PulseWidth'

• 'Frequency'

• 'Position'

Output Arguments

ch — Counter input channel object
1xn array

Counter input channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

 addCounterInputChannel

4-187

Properties

Examples

Add a counter input EdgeCount channel

s = daq.createSession('ni')

addCounterInputChannel(s,'cDAQ1Mod5','ctr0','EdgeCount');

Add a counter input Frequency channel

Specify output arguments to represent the channel object and the index.

s = daq.createSession('ni')

[ch,idx]=addCounterInputChannel(s,'cDAQ1Mod5',1,'Frequency');

Add multiple counter input channels

s = daq.createSession ('ni')

ch = addCounterInputChannel(s,'cDAQ1Mod5',[0 2 4], 'EdgeCount');

More About
• “Acquire Counter Input Data”

See Also
inputSingleScan | startForeground | startForeground | removeChannel

4 Functions — Alphabetical List

4-188

addCounterOutputChannel
Add counter output channel

Syntax

addCounterOutputChannel(s,deviceID,channelID)

ch = addCounterOutputChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addCounterOutputChannel(s,deviceID,channelID,

measurementType)

Description

addCounterOutputChannel(s,deviceID,channelID) adds a counter channel
on the device represented by deviceID with the specified channelID, and channel
measurement type, represented by measurementType, to the session s. Measurement
types are vendor specific.

ch = addCounterOutputChannel(s,deviceID,channelID,measurementType)

returns the object ch.

[ch,idx] = addCounterOutputChannel(s,deviceID,channelID,

measurementType) returns the object ch, representing the channel that was added
and the index, idx, which is an index into the array of the session object's Channels
property.

Tip Use daq.createSession to create a session object before you use this method.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

 addCounterOutputChannel

4-189

deviceID — Device ID
character string

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType — Channel measurement type
character string

Channel measurement type specified as a string. measurementType represents
a vendor-defined measurement type. A valid output measurement type is
'PulseGeneration'.

Output Arguments

ch — Counter output channel object
1xn array

Counter output channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

4 Functions — Alphabetical List

4-190

Properties

Examples

Add a counter output PulseGeneration channel

s = daq.createSession('ni')

addCounterOutputChannel(s,'cDAQ1Mod3','ctr0','PulseGeneration')

Add two counter output PulseGeneration channels

s = daq.createSession('ni')

ch = addCounterOutputChannel(s,'cDAQ1Mod3',0:1,'PulseGeneration')

More About
• “Generate Pulses on a Counter Output Channel”

See Also
startBackground | addCounterInputChannel | removeChannel

 resetCounters

4-191

resetCounters
Reset counter channel to initial count

Syntax

resetCounters(s)

Description

resetCounters(s) restarts the current value of counter channels configured in the
session object, s to the specified InitialCount property on each channel.

Tips

• Reset counters only if you are performing on-demand operations using or

• Create an acquisition session and add a channel before you use this method. See
daq.createSession for more information.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

Examples

Reset Counters

Create a session with a counter channel with an 'EdgeCount' measurement type:

4 Functions — Alphabetical List

4-192

s = daq.createSession ('ni');

addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount');

Acquire data.

inputSingleScan(s)

ans =

 756

Reset the counter to the default value, 0, and acquire again.

resetCounters(s)

inputSingleScan(s)

ans =

 303

• “Counter Channels”

More About
• “Acquire Counter Input Data”
• “Acquire Counter Input Data”

See Also
daq.createSession | addCounterInputChannel | inputSingleScan

 addTriggerConnection

4-193

addTriggerConnection
Add trigger connection

Syntax

addTriggerConnection(s,source,destination,type)

tc = addTriggerConnection(s,source,destination,type)

[tc,idx] = addTriggerConnection(s,source,destination,type)

Description
addTriggerConnection(s,source,destination,type) establishes a trigger
connection from the specified source device and terminal to the specified destination
device and terminal, of the specified connection type.

tc = addTriggerConnection(s,source,destination,type) establishes a trigger
connection from the specified source and terminal to the specified destination device and
terminal, of the specified connection type and displays it in the variable tc.

[tc,idx] = addTriggerConnection(s,source,destination,type) establishes
a trigger connection from the specified source device and terminal to the specified
destination device and terminal of the specified connection type and displays the
connection in the variable tc and the connection index, idx.

Tip Before adding trigger connections, create a session using daq.createSession, and
add channels to the session.

Input Arguments
s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

4 Functions — Alphabetical List

4-194

source — Source of trigger connection
character string

Source for the trigger connection, specified as a character string. Valid values are:

'external'

When your trigger is based on an external event.
'deviceID/terminal'

When your trigger source is on a specific terminal on a device in your session. For
example, 'Dev1/PFI1', for more information on device ID see Device. For more
information on terminal see Terminals.

'chassisId/terminal'

When your trigger source is on a specific terminal on a chassis in your session, for
example, 'cDAQ1/PFI1'. For more information on terminal see Terminals.

You can have only one trigger source in a session.

destination — Destination of trigger connection
character string

Destination for the trigger connection, specified as a character string. Valid values are:

'external'

When your trigger source is connected to an external device.
'deviceID/terminal'

When your trigger source is connected to another device in your session, for example,
'Dev1/PFI1'. For more information on device ID see Device. For more information
on terminal see Terminals.

'chassisId/terminal'

When your trigger source is connected to a chassis in your session, for example,
'cDAQ1/PFI1'. For more information on terminal see Terminals.

You can also specify multiple destination devices as an array, for example, {'Dev1/
PFI1','Dev2/PFI1'}.

type — Trigger connection type
character string

 addTriggerConnection

4-195

The trigger connection type, specified as a string. StartTrigger is the only connection
type available for trigger connections at this time.

Output Arguments

tc — Trigger connection object
1xn array

The trigger connection that you add, returned as an object containing a 1xn array trigger
connection information.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add External Start Trigger Connection

Create a session and add an analog input channel from Dev1 to the session.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0', 'Voltage');

Add a trigger connection from an external device to terminal PFI1 on Dev1 using the
'StartTrigger' connection type:

addTriggerConnection(s,'external','Dev1/PFI1','StartTrigger')

Export Trigger to External Device

To Add trigger connection going to an external destination, create a session and add an
analog input channel from Dev1 to the session.

s = daq.createSession('ni')

4 Functions — Alphabetical List

4-196

addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a trigger from terminal PFI0 on Dev1 to an external device using the
'StartTrigger' connection type:

addTriggerConnection(s,'Dev1/PFI1','external','StartTrigger')

Save Trigger Connection

Add a trigger connection from terminal PFI1 on Dev1 to terminal PFI0 on Dev2 using
the 'StartTrigger' connection type and store it in tc

To display a trigger connection in a variable, create a session and add an analog input
channel from Dev1 and Dev2 to the session.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0','Voltage');

addAnalogInputChannel(s,'Dev2','ai1','Voltage');

Save the trigger connection in tc.

tc = addTriggerConnection(s,'Dev1/PFI1','Dev2/PFI0','StartTrigger');

• “Acquire Voltage Data Using a Digital Trigger”
• “Multiple-Device Synchronization”
• “Multiple-Chassis Synchronization”

More About
• “Trigger Connections”
• “Synchronization”

See Also
addClockConnection | daq.createSession | removeConnection

 addClockConnection

4-197

addClockConnection
Add clock connection

Syntax

addClockConnection(s,source,destination,type)

cc = addClockConnection(s,source,destination,type)

[cc,idx] = addClockConnection(s,source,destination,type)

Description

addClockConnection(s,source,destination,type) adds a clock connection from
the specified source device and terminal to the specified destination device and terminal,
of the specified connection type.

cc = addClockConnection(s,source,destination,type) adds a clock connection
from the specified source device and terminal to the specified destination device and
terminal, of the specified connection type and displays it in the variable cc.

[cc,idx] = addClockConnection(s,source,destination,type) adds a clock
connection from the specified source device and terminal to the specified destination
device and terminal, of the specified connection type and displays the connection in the
variable cc and the connection index, idx.

Tip Before adding clock connections, create a session using daq.createSession, and
add channels to the session.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

4 Functions — Alphabetical List

4-198

source — Source of clock connection
character string

Source for the clock connection, specified as a string. Valid values are:

'external'

When your clock is based on an external event.
'deviceID/terminal'

When your clock source is on a specific terminal on a device in your session, for
example, 'Dev1/PFI1'. For more information on device ID see Device. For more
information on terminal see Terminals.

'chassisId/terminal'

When your clock source is on a specific terminal on a chassis in your session, for
example, 'cDAQ1/PFI1'. For more information on terminal see Terminals.

You can have only one clock source in a session.

destination — Destination of clock connection
character string

Destination for the clock connection, specified as a character string. Valid values are:

'external'

When your clock source is connected to an external device.
'deviceID/terminal'

When your clock source is connected to another device in your session, for example,
'Dev1/PFI1'. For more information on device ID see Device. For more information
on terminal see Terminals.

'chassisId/terminal'

When your clock source is connected to a chassis in your session, for example,
'cDAQ1/PFI1'. For more information on terminal see Terminals.

You can also specify multiple destination devices as an array, for example, {'Dev1/
PFI1','Dev2/PFI1'}.

type — Clock connection type
character string

 addClockConnection

4-199

The clock connection type, specified as a string. ScanClock is the only connection type
available for clock connections at this time.

Output Arguments

cc — Clock connection object
1xn array

The clock connection that you add, returned as an object containing a 1xn array clock
connection information.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add External Scan Clock

Create a session and add an analog input channel from Dev1 to the session.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0', 'Voltage');

Add a clock connection from an external device to terminal PFI1 on Dev1 using the
'ScanClock' connection type and save the connection settings to a variable:

cc = addClockConnection(s,'external','Dev1/PFI1','ScanClock');

Export Scan Clock to External Device

To add clock connection going to an external destination, create a session and add an
analog input channel from Dev1 to the session.

4 Functions — Alphabetical List

4-200

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0', 'Voltage');

Add a clock from terminal PFI0 on Dev1 to an external device using the 'ScanClock'
connection type:

addClockConnection(s,'Dev1/PFI1','external','ScanClock');

More About
• “Clock Connections”
• “Synchronization”

See Also
addTriggerConnection | daq.createSession | removeConnection

Related Examples
• “Import Scan Clock from External Source”
• “Acquire Clocked Digital Data with Imported Clock”
• “Export Scan Clock to External System”
• “Acquire Clocked Digital Data with Shared Clock”
• “Acquire Digital Data Using Counter Channels”
• “Multiple-Device Synchronization”
• “Multiple-Chassis Synchronization”

 removeConnection

4-201

removeConnection
Remove clock or trigger connection

Syntax

removeConnection(s,idx);

Description

removeConnection(s,idx); remove the specified clock or trigger with the index, idx,
from the ion. The connected device remains in the session, but no longer synchronize
with other connected devices in the session.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use
the data acquisition ion for acquisition and generation operation Create one session per
vendor and use that vendor session to perform all data acquisition operation

idx

Index of the connection you want to remove.

Examples

Remove a Clock and Trigger Connection

Create clock and trigger connection in the session s.

s = daq.createSeion('ni');

addAnalogInputChannel(s,'Dev1','ai0','Voltage')

4 Functions — Alphabetical List

4-202

addAnalogInputChannel(s,'Dev2','ai0','Voltage')

addAnalogInputChannel('Dev3','ai0','Voltage')

addTriggerConnection(s,'Dev1/PFI0',{'Dev2/PFI0','Dev3/PFI0'}','StartTrigger');

addClockConnection(s,'Dev1/PFI1',{'Dev2/PFI1','Dev3/PFI1'},'ScanClock');

View existing synchronization connection .

s.Connections

ans=

Start Trigger is provided by 'Dev1' at 'PFI0' and will be received by:

 'Dev2' at terminal 'PFI0'

 'Dev3' at terminal 'PFI0'

Scan Clock is provided by 'Dev1' at 'PFI1' and will be received by:

 'Dev2' at terminal 'PFI1'

 'Dev3' at terminal 'PFI1'

 index Type Source Deination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI0 Dev2/PFI0

 2 StartTrigger Dev1/PFI0 Dev3/PFI0

 3 ScanClock Dev1/PFI1 Dev2/PFI1

 4 ScanClock Dev1/PFI1 Dev3/PFI1

Remove the trigger connection with the index 2 from Dev3/PFI0 to Dev1/PFI0:

removeConnection(s,2);

View updated connection

s.Connections

an=

Start Trigger is provided by 'Dev1' at 'PFI0' and will be received by 'Dev2' at terminal 'PFI0'.

Scan Clock is provided by 'Dev1' at 'PFI1' and will be received by:

 'Dev2' at terminal 'PFI1'

 'Dev3' at terminal 'PFI1'

 index Type Source Deination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI0 Dev2/PFI0

 2 ScanClock Dev1/PFI1 Dev2/PFI1

 removeConnection

4-203

 3 ScanClock Dev1/PFI1 Dev3/PFI1

More About
• “Trigger Connections”
• “Clock Connections”
• “Synchronization”

See Also
addClockConnection | addTriggerConnection | daq.createSession

4 Functions — Alphabetical List

4-204

addDigitalChannel
Add digital channel

Syntax
addDigitalChannel(s,deviceID,channelID,measurementType)

ch = addDigitalChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addDigitalChannel(s,deviceID,channelID,measurementType)

Description
addDigitalChannel(s,deviceID,channelID,measurementType) adds a digital
channel to the session, on the device represented by deviceID, with the specified port
and single-line combination and the channel measurement type to the session, s.

ch = addDigitalChannel(s,deviceID,channelID,measurementType) creates
and displays the digital channel ch.

[ch,idx] = addDigitalChannel(s,deviceID,channelID,measurementType)

additionally creates and displays idx, which is an index into the array of the session
object's Channels property.

Note: To input and output decimal values, use the conversion functions:

• decimalToBinaryVector

• binaryVectorToDecimal

• hexToBinaryVector

• binaryVectorToHex

Tips

• Create a session using daq.createSession before adding digital channels.

• Change the Direction property of a bidirectional channel before you read or write
digital data.

 addDigitalChannel

4-205

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

deviceID — Device ID
character string

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType — Channel measurement type
character string

Channel measurement type specified as a string. measurementType represents a
vendor-defined measurement type. Measurement types include:

• InputOnly

• OutputOnly

• Bidirectional

Output Arguments

ch — Analog input channel object
1xn array

4 Functions — Alphabetical List

4-206

Analog input channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add Digital Channels

Discover available digital devices on your system, create a session with digital channels.

Find all installed devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description

----- ------ --------- -----------------------------

1 ni Dev1 National Instruments USB-6255

2 ni Dev2 National Instruments USB-6363

Get detailed subsystem information for NI USB-6255:

d(1)

ans =

ni: National Instruments USB-6255 (Device ID: 'Dev1')

 Analog input subsystem supports:

 7 ranges supported

 Rates from 0.1 to 1250000.0 scans/sec

 80 channels ('ai0' - 'ai79')

 addDigitalChannel

4-207

 'Voltage' measurement type

 Analog output subsystem supports:

 -5.0 to +5.0 Volts,-10 to +10 Volts ranges

 Rates from 0.1 to 2857142.9 scans/sec

 2 channels ('ao0','ao1')

 'Voltage' measurement type

 Digital subsystem supports:

 24 channels ('port0/line0' - 'port2/line7')

 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'PulseGeneration' measurement type

Create a session with input, output, and bidirectional channels using Dev1:

s = daq.createSession('ni');

addDigitalChannel(s,'dev1', 'Port0/Line0:1', 'InputOnly');

ch = addDigitalChannel(s,'dev1', 'Port0/Line2:3', 'OutputOnly');

[ch,idx] = addDigitalChannel(s,'dev1', 'Port2/Line0:1', 'Bidirectional')

ans =

Data acquisition session using National Instruments hardware:

 Clocked operations using startForeground and startBackground are disabled.

 Only on-demand operations using inputSingleScan and outputSingleScan can be done.

 Number of channels: 6

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ----------- ----------------------- ----- ----

 1 dio Dev1 port0/line0 InputOnly n/a

 2 dio Dev1 port0/line1 InputOnly n/a

 3 dio Dev1 port0/line2 OutputOnly n/a

 4 dio Dev1 port0/line3 OutputOnly n/a

 5 dio Dev1 port2/line0 Bidirectional (Unknown) n/a

 6 dio Dev1 port2/line1 Bidirectional (Unknown) n/a

• “Acquire Non-Clocked Digital Data”

4 Functions — Alphabetical List

4-208

• “Generate Non-Clocked Digital Data”
• “Acquire Clocked Digital Data with Imported Clock”
• “Acquire Digital Data Using Counter Channels”
• “Acquire Clocked Digital Data with Imported Clock”

More About
• “Digital Subsystem Channels”

See Also
binaryVectorToDecimal | binaryVectorToHex | daq.createSession
| decimalToBinaryVector | hexToBinaryVector | inputSingleScan |
outputSingleScan | startBackground | startForeground

 decimalToBinaryVector

4-209

decimalToBinaryVector
Convert decimal value to binary vector

Syntax

decimalToBinaryVector(decimalNumber)

decimalToBinaryVector(decimalNumber,numberOfBits)

decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder)

decimalToBinaryVector(decimalNumber,[],bitOrder)

Description

decimalToBinaryVector(decimalNumber) converts a positive decimal number to a
binary vector, represented using the minimum number of bits.

decimalToBinaryVector(decimalNumber,numberOfBits) converts a decimal
number to a binary vector with the specified number of bits.

decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder) converts a
decimal number to a binary vector with the specified number of bits in the specified bit
ordering.

decimalToBinaryVector(decimalNumber,[],bitOrder) converts a decimal
number to a binary vector with default number of bits in the specified bit ordering.

Examples

Convert a Decimal to a Binary Vector

decimalToBinaryVector(6)

ans =

 1 1 0

Convert an Array of Decimals to a Binary Vector Array

decimalToBinaryVector(0:4)

4 Functions — Alphabetical List

4-210

ans =

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

Convert a Decimal into a Binary Vector of Specific Bits

decimalToBinaryVector(6, 8, 'MSBFirst')

ans =

 0 0 0 0 0 1 1 0

Convert a Decimal into a Binary Vector with LSB First

decimalToBinaryVector(6, [], 'LSBFirst')

ans =

 0 1 1

Convert an Array of Decimals into a Binary Vector Array with LSB First

decimalToBinaryVector(0:4, 4, 'LSBFirst')

ans =

 0 0 0 0

 1 0 0 0

 0 1 0 0

 1 1 0 0

 0 0 1 0

• “Generate Signals Using Decimal Data Across Multiple Lines”

Input Arguments

decimalNumber — Number to convert to binary vector
numeric

The number to convert to a binary vector specified as a positive integer scalar.

 decimalToBinaryVector

4-211

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

numberOfBits — Number of bits required to correctly represent the decimal number
numeric

The number of bits required to correctly represent the decimal. This is an optional
argument. If you do not specify the number of bits, the number is represented using
the minimum number of bits needed. By default minimum number of bits needed to
represent the value is specified, unless you specify a value

bitOrder — Bit order for binary vector representation
MSBFirst (default) | LSBFirst

Bit order for the binary vector representation specified as:

• MSBFirst if you want the first element of the output to contain the most significant
bit of the decimal number.

• LSBFirst if you want the first element of the output to contain the least significant
bit of the decimal number.

See Also

Functions
binaryVectorToDecimal | binaryVectorToHex | hexToBinaryVector

4 Functions — Alphabetical List

4-212

binaryVectorToDecimal
Convert binary vector value to decimal value

Syntax

binaryVectorToDecimal(binaryVector)

binaryVectorToDecimal(binaryVector,bitOrder)

Description

binaryVectorToDecimal(binaryVector) converts a binary vector to a decimal.

binaryVectorToDecimal(binaryVector,bitOrder) converts a binary vector with
the specified bit orientation to a decimal .

Examples

Convert Binary Vector to a Decimal Value

binaryVectorToDecimal([1 1 0])

ans =

 6

Convert a Binary Vector Array to a Decimal Value

binaryVectorToDecimal([1 0 0 0; 0 1 0 0])

ans =

 8

 4

Convert a Binary Vector with LSB First

binaryVectorToDecimal([1 0 0 0; 0 1 0 0],'LSBFirst')

 binaryVectorToDecimal

4-213

ans =

 1

 2

Convert a Binary Vector Array with LSB First

binaryVectorToDecimal([1 1 0],'LSBFirst')

ans =

 6

• “Generate Signals Using Decimal Data Across Multiple Lines”

Input Arguments

binaryVector — Binary vector to convert to decimal
binary Vectors

Binary vector to convert to a decimal specified as a single binary vector or a row or
column-based array of binary vectors.

bitOrder — Bit order for binary vector representation
MSBFirst (default) | LSBFirst

Bit order for the binary vector representation specified as:

• MSBFirst if you want the first element of the output to contain the most significant
bit of the decimal number.

• LSBFirst if you want the first element of the output to contain the least significant
bit of the decimal number.

See Also

Functions
binaryVectorToHex | decimalToBinaryVector | hexToBinaryVector

4 Functions — Alphabetical List

4-214

hexToBinaryVector
Convert hexadecimal value to binary vector

Syntax

hexToBinaryVector(hexNumber)

hexToBinaryVector(hexNumber,numberOfBits)

hexToBinaryVector(hexNumber,numberOfBits,bitOrder)

Description

hexToBinaryVector(hexNumber) converts hexadecimal numbers to a binary vector.

hexToBinaryVector(hexNumber,numberOfBits) converts hexadecimal numbers to a
binary vector with the specified number of bits.

hexToBinaryVector(hexNumber,numberOfBits,bitOrder) converts hexadecimal
numbers to a binary vector with the specified number of bits in the specified bit ordering.

Examples

Convert a hexadecimal to a binary vector

hexToBinaryVector('A1')

ans=

 1 0 1 0 0 0 0 1

Convert a hexadecimal with a leading 0 to a binary Vector

hexToBinaryVector('0xA')

ans=

 hexToBinaryVector

4-215

 1 0 1 0

Convert an array hexadecimal numbers to a binary vector

hexToBinaryVector(['A1'; 'B1'])

ans=

 1 0 1 0 0 0 0 1

 1 0 1 1 0 0 0 1

Convert a hexadecimal number into a binary vector of specific bits

hexToBinaryVector('A1',12, 'MSBFirst')

ans=

 0 0 0 0 1 0 1 0 0 0 0 1

Convert a cell array of hexadecimal numbers into a binary vector of specific bits

hexToBinaryVector({'A1';'B1'},8)

ans=

 1 0 1 0 0 0 0 1

 1 0 1 1 0 0 0 1

Convert a hexadecimal into a binary vector with LSB first

hexToBinaryVector('A1', [], 'LSBFirst')

ans=

 1 0 0 0 0 1 0 1

• “Acquire Digital Data in Hexadecimal Values”

Input Arguments

hexNumber — Hexadecimal to convert to binary vector
hexadecimal

4 Functions — Alphabetical List

4-216

Hexadecimal number to convert to a binary vector specified as a character or an array.

numberOfBits — Number of bits required to correctly represent the decimal number
numeric

This is an optional argument. If you do not specify the number of bits, the number is
represented using the minimum number of bits needed.

bitOrder — Bit order for binary vector representation
MSBFirst (default) | LSBFirst

Bit order for the binary vector representation specified as:

• MSBFirst if you want the first element of the output to contain the most significant
bit of the decimal number.

• LSBFirst if you want the first element of the output to contain the least significant
bit of the decimal number.

See Also

Functions
binaryVectorToDecimal | binaryVectorToHex | decimalToBinaryVector

 binaryVectorToHex

4-217

binaryVectorToHex
Convert binary vector value to hexadecimal

Syntax
binaryVectorToHex(binaryVector)

binaryVectorToHex(binaryVector,bitOrder)

Description
binaryVectorToHex(binaryVector) converts the input binary vector to a
hexadecimal.

binaryVectorToHex(binaryVector,bitOrder) converts the input binary vector
using the specified bit orientation.

Examples
Convert a Binary Vector to a Hexadecimal

binaryVectorToHex([0 0 1 1 1 1 0 1])

ans =

 3D

Convert an Array of Binary Vectors to a Hexadecimal

binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0])

ans =

 'C4'

 '0A'

The output is appended with 0s to make all hex values same length strings.

Convert a Binary Vector with LSB First

binaryVectorToHex([0 0 1 1 1 1 0 1], 'LSBFirst')

4 Functions — Alphabetical List

4-218

ans =

 BC

Convert a Binary Vector Array with LSB First

binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0], 'LSBFirst')

ans =

 '23'

 '50'

The output is appended with 0s to make all hex values same length strings.

Note: The binary vector array is converted to a cell array of hexadecimal numbers. If you
input a single binary vector, it is converted to a hexadecimal string.

• “Acquire Digital Data in Hexadecimal Values”

Input Arguments

binaryVector — Binary vector to convert to hexadecimal
binary vector

The binary vector to convert to hexadecimal specified as a row vector with 0s and 1s. It
can also be a column-based array of binary vectors

bitOrder — Bit order for binary vector representation
MSBFirst (default) | LSBFirst

Bit order for the binary vector representation specified as:

• MSBFirst if you want the first element of the output to contain the most significant
bit of the decimal number.

• LSBFirst if you want the first element of the output to contain the least significant
bit of the decimal number.

 binaryVectorToHex

4-219

See Also

Functions
binaryVectorToDecimal | decimalToBinaryVector | hexToBinaryVector

4 Functions — Alphabetical List

4-220

supportPackageInstaller

Find and install support for third-party hardware or software

Syntax

supportPackageInstaller

Description

The supportPackageInstaller function opens Support Package Installer.

Support Package Installer can install support packages, which add support for specific
third-party hardware or software to specific MathWorks® products.

To see a list of available support packages, run Support Package Installer and advance to
the second screen.

You can also start Support Package Installer in one of the following ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware Support Packages.

 supportPackageInstaller

4-221

• Double-click a support package installation file (*.mlpkginstall).

See Also
matlabshared.supportpkg.checkForUpdate |
matlabshared.supportpkg.getInstalled | targetUpdater

4 Functions — Alphabetical List

4-222

daq.reset
Reset MATLAB to initial state

Syntax

daq.reset

Description

daq.reset deletes all data acquisition objects from your MATLAB workspace and
returns it to a known initial state of having no device objects and no data acquisition
MEX-file or DLLs loaded in memory.

More About
• “Working with the Session-Based Interface”

See Also
daq.createSession

 addAudioInputChannel

4-223

addAudioInputChannel
Add audio input channel

Syntax

ch = addAudioInputChannel(s,deviceName,channelID)

[ch,idx] = addAudioInputChannel(s,deviceName,channelID)

Description

ch = addAudioInputChannel(s,deviceName,channelID) creates and displays the
object ch representing a channel added to the session s using the device represented by
deviceName, with the specified channelID. The channel is stored in the variable ch.

[ch,idx] = addAudioInputChannel(s,deviceName,channelID) additionally
creates and displays the object idx, which is an index into the array of the session object's
Channels property.

Tips

• Use daq.createSession to create a session object before you use this method.

• To use analog channels, see addAnalogInputChannel.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

deviceName — Device ID
character string

4 Functions — Alphabetical List

4-224

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

Output Arguments
ch — Audio input channel object
1xn array

Audio input channel that you add, returned as an object containing a 1xn array of vendor
specific channel specific information. Use this channel object to access device and channel
properties.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples
Add an audio input channel

s = daq.createSession('directsound')

addAudioInputChannel(s,'Audio1',1);

Add multiple audio input channels

Add two audio input channels and specify output arguments to represent the channel
object and the index.

 addAudioInputChannel

4-225

s = daq.createSession('directsound')

[ch, idx] = addAudioInputChannel(s,'Audio1',1:2);

More About
• “Session-Based Interface”

See Also
addAudioOutputChannel | daq.createSession | startForeground |
startBackground | removeChannel

4 Functions — Alphabetical List

4-226

addAudioOutputChannel
Add audio output channel

Syntax

ch = addAudioOutputChannel(s,deviceName,channelID)

[ch,idx] = addAudioOutputChannel(s,deviceName,channelID)

Description

ch = addAudioOutputChannel(s,deviceName,channelID) creates and displays
the object ch representing a channel added to the session s using the device represented
by deviceName, with the specified channelID. The channel is stored in the variable ch.

[ch,idx] = addAudioOutputChannel(s,deviceName,channelID) additionally
creates and displays the object idx, which is an index into the array of the session
object's Channels property.

Tips

• Use daq.createSession to create a session object before you use this method.

• To use analog channels, see addAnalogInputChannel.

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a string variable. Use the
data acquisition session for acquisition and generation operations. Create one session per
vendor and use that vendor session to perform all data acquisition operations.

deviceName — Device ID
character string

 addAudioOutputChannel

4-227

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

Output Arguments
ch — Audio output channel object
1xn array

Analog input channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples
Add an audio input channel

s = daq.createSession ('directsound')

ch = addAudioOutputChannel(s,'Audio1',1);

Add multiple audio input channels

Add five audio input channels and specify output arguments to represent the channel
object and the index.

4 Functions — Alphabetical List

4-228

s = daq.createSession ('directsound')

[ch, idx] = addAudioOutputChannel(s,'Audio1',1);

More About
• “Session-Based Interface”

See Also
addAudioInputChannel | daq.createSession | startForeground |
startBackground | removeChannel

 addFunctionGeneratorChannel

4-229

addFunctionGeneratorChannel
Add function generator channel

“Install Digilent Device Support” and “Create a Session ” before you work with function
generator channels.

Syntax

addFunctionGeneratorChannel(s,deviceID,channelID,waveformType)

[ch,idx] = addFunctionGeneratorChannel(s,deviceID,channelID,

waveformType)

Description

addFunctionGeneratorChannel(s,deviceID,channelID,waveformType) adds
a channel on the device represented by deviceID, with the specified channelID and
waveformType to the session s.

[ch,idx] = addFunctionGeneratorChannel(s,deviceID,channelID,

waveformType) creates and displays the object ch, representing the channel that
was added and the index, idx, which is an index into the array of the session object's
Channels property.

Examples

Add a Function Generator Channel

Add a channel on a Digilent device with a sine waveform type.

Create a session for Digilent devices.

s = daq.createSession('digilent');

Add a channel with a sine waveform type.

addFunctionGeneratorChannel(s,'AD1', 1, 'Sine')

4 Functions — Alphabetical List

4-230

ans =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 SampleRate: 4096

 WaveformType: Sine

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

MeasurementType: 'Voltage'

Save the Channel Information and the Channel Index of a Function Generator Channel

Create a session for Digilent devices.

s = daq.createSession('digilent');

Add a channel with a sine waveform type.

[ch,idx] = addFunctionGeneratorChannel(s,'AD1', 1, 'Sine')

ch =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 SampleRate: 4096

 WaveformType: Sine

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

MeasurementType: 'Voltage'

Properties, Methods, Events

 addFunctionGeneratorChannel

4-231

idx =

 1

• “Generate a Standard Waveform Using Waveform Function Generation Channels”

Input Arguments

s — Session object
character string

Session object created using daq.createSession specified as a character string. Use
the data acquisition session for acquisition and generation operations. Create one session
per vendor and use that vendor session to perform all data acquisition operations.

deviceID — Device ID
character string

Device ID as defined by the device vendor specified as a character string. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channel’s position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

waveformType — Function generator waveform type
character string

Function generator waveform type specified as a string. Waveform types include:

• 'Sine’

• 'Square’

• 'Triangle’

• 'RampUp’

4 Functions — Alphabetical List

4-232

• 'RampDown’

• 'DC’

• 'Arbitrary’

Output Arguments

ch — Analog input channel object
1-by-n array

Analog input channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric value

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

More About
• “Digilent Waveform Function Generation Channels”
• “Waveform Types”

See Also

Functions
addAnalogInputChannel | daq.createSession | startForeground

